# Welcome Note VarDial 2025

VarDial Workshop and Shared Task Organizers

Abu Dhabi, UAE, January 2025

# The VarDial Workshop Series

- VarDial 2014 at COLING in Dublin, Ireland
- LT4VarDial 2015 at RANLP in Hissar, Bulgaria
- VarDial 2016 at COLING in Osaka, Japan
- VarDial 2017 at EACL in Valencia, Spain
- VarDial 2018 at COLING in Santa Fe, United States
- VarDial 2019 at NAACL in Minneapolis, United States
- VarDial 2020 at COLING virtually in Barcelona, Spain
- VarDial 2021 at EACL virtually in Kiev, Ukraine
- VarDial 2022 at COLING in Gyeongju, Korea (and online)
- VarDial 2023 at EACL in Dubrovnik, Croatia (and online)
- VarDial 2024 at NAACL in Mexico City, Mexico (and online)
- VarDial 2025 at COLING in Abu Dhabi, UAE

#### Schedule

```
9:00 - 9:30 — Opening and Findings of the Evaluation Campaign
```

- 9:30 9:50 Shared Task Participants Poster Boosters
- **9:50 10:15** Oral presentation 1
- **10:15 10:30** Poster boosters I
- **10:30 11:00 —** Coffee break
- **11:00 12:00** Invited talk: Fajri Koto
- 12:00 12:30 Poster boosters II
- **12:30 14:00** Lunch break
- **14:00 15:00** Poster session
- **15:00 15:30** Oral presentation 2
- **15:30 16:00** Coffee break
- **16:00 17:15** Oral presentations 3-5
- **17:15 17:30** Closing remarks

# VarDial 2025 Organizers

#### Workshop organizers:

- Yves Scherrer
- Tommi Jauhiainen
- Marcos Zampieri
- Preslav Nakov
- Nikola Ljubešić
- Jörg Tiedemann

# Organizers of the NorSID shared task:

- Yves Scherrer
- Rob van der Goot
- Petter Mæhlum

# Overview of the VarDial 2025 Evaluation Campaign

The NorSID Shared Task:

Norwegian Slot, Intent and Dialect Identification

#### Slot and Intent Detection

Add VarDial to the calendar for tomorrow 9 AM

#### Slot and Intent Detection

Add VarDial to the calendar for tomorrow 9 AM

**Intent:** AddCalendar

#### Slot and Intent Detection

Add VarDial to the calendar for tomorrow 9 AM

Intent: AddCalendar

**Slots:** Add [VarDial]<sub>Event</sub> to the calendar for [tomorrow 9 AM]<sub>Datetime</sub>

### xSID (2021)



Van der Goot, R., et al.: From Masked Language Modeling to Translation: Non-English Auxiliary Tasks Improve Zero-shot Spoken Language Understanding. Proceedings of NAACL 2021.

## SID4LR (Shared Task at VarDial 2023)

| EN         | Remind me to go to the dentist next Monday             |
|------------|--------------------------------------------------------|
| IT         | Ricordami di andare dal dentista lunedì prossimo       |
| <b>NAP</b> | Ricuordam' 'e 'i addo dentista lunnerì prossimo        |
| DE         | Erinnere mich am nächsten Montag zum Zahnarzt zu gehen |
| GSW        | Du mi dra erinnere nöchscht Mänti zum Proffumech zga   |
| DE-ST      | Erinner mi in negschtn Muntig zin Zohnorzt zu gian     |

Aepli, N., et al.: *Findings of the VarDial Evaluation Campaign 2023*. Proceedings of VarDial 2023.

### NoMusic (VarDial 2024)

Extension of the xSID data to 11 Norwegian varieties: Standard Bokmål + 10 dialects (A1 – A10):

| English | Set a reminder to go to the grocery store later      |
|---------|------------------------------------------------------|
| Bokmål  | Sett på en påminnelse om å gå i butikken etterpå     |
| A1      | Minn mæ på at æ skal dra på butikken seinere.        |
| A2      | Sett enn påminnelse om å fære tel butikken seinar.   |
| A3      | Sett en alarm for å da te matbutikken seinere        |
| A4      | Sett en påminnelse om å gå te matbutikken seinar     |
| A5      | Sett en påminnelse for å gå t butikken seinar        |
| A6      | Sett en påminnelse om å stikke på butikken seinere.  |
| A7      | Sett på en påminnelse om å gå t butikken seinare     |
| A8      | Lag ein påminnelse om å gå på butikken seinere       |
| A9      | Sett ein påminnelse for å dra te matbutikken seinåre |
| A10     | Sett på en påminnelse for å gå på butikken senere.   |

Mæhlum, P. & Scherrer, Y.: *NoMusic – The Norwegian Multi-Dialectal Slot and Intent Detection Corpus.* Proceedings of VarDial 2024.

## NoMusic (VarDial 2024)



### The NorSID Shared Task

#### Three subtasks:

- Slot identification
  - BIO span annotation task (40 slot types)
  - Metric: span F1 score
- Intent identification
  - Text classification task (18 intent labels)
  - Metric: accuracy
- Dialect identification
  - Text classification task (4 labels)
  - Metric: weighted F1 score on deduplicated data

### The NorSID Shared Task

#### Three subtasks:

- Slot identification
  - BIO span annotation task (40 slot types)
  - Metric: span F1 score
- Intent identification
  - Text classification task (18 intent labels)
  - Metric: accuracy
- Dialect identification
  - Text classification task (4 labels)
  - Metric: weighted F1 score on deduplicated data

#### Four participating teams:

| Team   | Slots        | Intents      | Dialects |
|--------|--------------|--------------|----------|
| HiTZ   | ✓            | ✓            | <b>√</b> |
| MaiNLP | $\checkmark$ | $\checkmark$ |          |
| LTG    | $\checkmark$ | $\checkmark$ |          |
| CUFE   |              | ✓            | ✓        |

| Dataset                                                                               | Size | S | I | D |
|---------------------------------------------------------------------------------------|------|---|---|---|
| Manually annotated English xSID <b>training</b> set                                   | 43k  | ✓ | ✓ | - |
| Machine-translated xSID training sets (12 languages, e.g. German, Dutch, Danish, Nor- | 43k  | ✓ | ✓ | - |
| wegian Bokmål)                                                                        |      |   |   |   |

| Dataset                                                                                            | Size | S | I | D          |
|----------------------------------------------------------------------------------------------------|------|---|---|------------|
| Manually annotated English xSID <b>training</b> set                                                | 43k  | ✓ | ✓ | -          |
| Machine-translated xSID training sets (12 languages, e.g. German, Dutch, Danish, Norwegian Bokmål) | 43k  | ✓ | ✓ | -          |
| NorDial (dialectal tweets, not annotated)                                                          |      | - | - | <b>(√)</b> |
| NordicTweetStream (geotagged tweets, not necessarily dialectal)                                    |      | - | - | (√)        |
| Nordic Dialect Corpus + LIA corpus (dialecto-<br>logical transcriptions, different genre)          |      | - | - | (√)        |

| Dataset                                                                                            | Size | S        | I | D   |
|----------------------------------------------------------------------------------------------------|------|----------|---|-----|
| Manually annotated English xSID <b>training</b> set                                                | 43k  | <b>√</b> | ✓ | -   |
| Machine-translated xSID training sets (12 languages, e.g. German, Dutch, Danish, Norwegian Bokmål) | 43k  | ✓        | ✓ | -   |
| NorDial (dialectal tweets, not annotated)                                                          |      |          |   | (√) |
| NordicTweetStream (geotagged tweets, not necessarily dialectal)                                    |      | -        | - | (√) |
| Nordic Dialect Corpus + LIA corpus (dialectological transcriptions, different genre)               |      | -        | - | (√) |
| Concatenation of the 11 NoMusic <b>validation</b> sets (allowed for <b>training</b> )              | 3300 | ✓        | ✓ | ✓   |

| Dataset                                                                                            | Size | S            | I            | D          |
|----------------------------------------------------------------------------------------------------|------|--------------|--------------|------------|
| Manually annotated English xSID <b>training</b> set                                                | 43k  | ✓            | ✓            | -          |
| Machine-translated xSID training sets (12 languages, e.g. German, Dutch, Danish, Norwegian Bokmål) | 43k  | $\checkmark$ | ✓            | -          |
| NorDial (dialectal tweets, not annotated)                                                          |      | -            | -            | (√)        |
| NordicTweetStream (geotagged tweets, not necessarily dialectal)                                    |      | -            | -            | (√)        |
| Nordic Dialect Corpus + LIA corpus (dialectological transcriptions, different genre)               |      | -            | -            | <b>(√)</b> |
| Concatenation of the 11 NoMusic <b>validation</b> sets (allowed for <b>training</b> )              | 3300 | ✓            | ✓            | ✓          |
| Concatenation of the 11 NoMusic <b>test</b> sets                                                   | 5500 | <b>√</b>     | $\checkmark$ | <b>√</b>   |

# Slots and Intents - Participants and Approaches

• Baseline: Multi-task mBERT fine-tuned on English xSID training data

# Slots and Intents – Participants and Approaches

- Baseline: Multi-task mBERT fine-tuned on English xSID training data
- Multi-task > single-task models (HiTZ)
- Norwegian/Scandinavian  $\approx$  multilingual base models (HiTZ, MaiNLP, LTG, CUFE)
- Norwegian > English training data for intents (HiTZ, MaiNLP, LTG)
- English > Norwegian training data for slots (HiTZ, MaiNLP, LTG)

# Slots and Intents – Participants and Approaches

- Baseline: Multi-task mBERT fine-tuned on English xSID training data
- Multi-task > single-task models (HiTZ)
- Norwegian/Scandinavian  $\approx$  multilingual base models (HiTZ, MaiNLP, LTG, CUFE)
- Norwegian > English training data for intents (HiTZ, MaiNLP, LTG)
- English > Norwegian training data for slots (HiTZ, MaiNLP, LTG)
- Improved label projection and translation of the Norwegian training data (LTG)

# Slots and Intents – Participants and Approaches

- Baseline: Multi-task mBERT fine-tuned on English xSID training data
- Multi-task > single-task models (HiTZ)
- ullet Norwegian/Scandinavian pprox multilingual base models (HiTZ, MaiNLP, LTG, CUFE)
- Norwegian > English training data for intents (HiTZ, MaiNLP, LTG)
- English > Norwegian training data for slots (HiTZ, MaiNLP, LTG)
- Improved label projection and translation of the Norwegian training data (LTG)
- Noise injection to simulate spelling and dialectal variation dialectal variation
- Training on auxiliary tasks (NER, POS, Dep, DID) \( \Pi \) (MaiNLP)
- Combining layers of models fine-tuned on different datasets (MaiNLP)

### Slots and Intents - Results

#### **Intents** (accuracy %):

| Submission | В     | N     | Т     | V     | all   |
|------------|-------|-------|-------|-------|-------|
| LTG 3      | 98.00 | 97.20 | 98.27 | 98.20 | 98.02 |
| LTG 1      | 98.20 | 97.20 | 98.33 | 97.84 | 97.89 |
| LTG 2      | 98.20 | 97.30 | 98.13 | 97.84 | 97.85 |
| HiTZ 2     | 98.20 | 97.10 | 97.60 | 97.88 | 97.69 |
| MaiNLP 3   | 97.80 | 96.90 | 98.00 | 97.68 | 97.64 |
| MaiNLP 2   | 97.60 | 96.20 | 97.67 | 97.16 | 97.16 |
| HiTZ 3     | 97.80 | 95.40 | 97.80 | 97.24 | 97.11 |
| HiTZ 1     | 97.40 | 95.40 | 96.93 | 96.04 | 96.29 |
| CUFE 1     | 96.40 | 93.30 | 95.80 | 93.56 | 94.38 |
| MaiNLP 1   | 92.80 | 92.60 | 93.40 | 94.00 | 93.47 |
| Baseline   | 86.40 | 82.60 | 83.33 | 84.80 | 84.15 |
| LTG 4*     | 97.80 | 96.70 | 97.73 | 97.20 | 97.31 |

- Results are close together
- Similar errors across teams
- Subtask is close to being solved

#### Slots and Intents - Results

#### **Intents** (accuracy %):

| Submission | В     | N     | Т     | V     | all   |
|------------|-------|-------|-------|-------|-------|
| LTG 3      | 98.00 | 97.20 | 98.27 | 98.20 | 98.02 |
| LTG 1      | 98.20 | 97.20 | 98.33 | 97.84 | 97.89 |
| LTG 2      | 98.20 | 97.30 | 98.13 | 97.84 | 97.85 |
| HiTZ 2     | 98.20 | 97.10 | 97.60 | 97.88 | 97.69 |
| MaiNLP 3   | 97.80 | 96.90 | 98.00 | 97.68 | 97.64 |
| MaiNLP 2   | 97.60 | 96.20 | 97.67 | 97.16 | 97.16 |
| HiTZ 3     | 97.80 | 95.40 | 97.80 | 97.24 | 97.11 |
| HiTZ 1     | 97.40 | 95.40 | 96.93 | 96.04 | 96.29 |
| CUFE 1     | 96.40 | 93.30 | 95.80 | 93.56 | 94.38 |
| MaiNLP 1   | 92.80 | 92.60 | 93.40 | 94.00 | 93.47 |
| Baseline   | 86.40 | 82.60 | 83.33 | 84.80 | 84.15 |
| LTG 4*     | 97.80 | 96.70 | 97.73 | 97.20 | 97.31 |

- Results are close together
- Similar errors across teams
- Subtask is close to being solved

#### Slots (span F1-score %):

| Submission | В     | Ν     | Т     | ٧     | all   |
|------------|-------|-------|-------|-------|-------|
| LTG 3      | 90.94 | 87.19 | 89.69 | 89.49 | 89.27 |
| LTG 2      | 89.92 | 87.89 | 89.27 | 89.62 | 89.25 |
| MaiNLP 2   | 90.11 | 79.66 | 85.18 | 87.17 | 85.57 |
| HiTZ 1     | 91.09 | 79.00 | 85.48 | 86.61 | 85.37 |
| MaiNLP 1   | 85.60 | 82.66 | 82.99 | 84.11 | 83.68 |
| MaiNLP 3   | 84.37 | 79.25 | 81.68 | 84.01 | 82.57 |
| LTG 1      | 84.74 | 80.09 | 80.96 | 83.30 | 82.22 |
| HiTZ 3     | 71.15 | 60.98 | 66.22 | 68.18 | 66.64 |
| Baseline   | 71.49 | 60.68 | 63.23 | 65.05 | 64.36 |
| HiTZ 2     | 56.74 | 51.94 | 56.69 | 56.25 | 55.66 |
| LTG 4*     | 91.84 | 87.56 | 89.00 | 89.82 | 89.38 |
|            |       |       |       |       |       |

- Northern dialects seem most difficult
- LTG 4\* includes Norwegian MASSIVE training dataset (not allowed by ST guidelines)

#### Slots - Results



- Precision > recall (except LTG)
- Unlabeled F1 > labeled F1 (difficulties finding the correct label)
- Loose F1 > strict F1 (difficulties finding the exact span boundaries)

# Dialects - Participants and Approaches

 Baseline: SVM classifier with TF-IDF-weighted features of character 1-to-4-grams, trained on validation set

# Dialects - Participants and Approaches

- Baseline: SVM classifier with TF-IDF-weighted features of character 1-to-4-grams, trained on validation set
- Multilingual BERT > Norwegian BERT (CUFE)
- Encoder models with fine-tuning > decoder models with few-shot prompting or supervised fine-tuning (HiTZ)

# Dialects - Participants and Approaches

- Baseline: SVM classifier with TF-IDF-weighted features of character 1-to-4-grams, trained on validation set
- Multilingual BERT > Norwegian BERT (CUFE)
- Encoder models with fine-tuning > decoder models with few-shot prompting or supervised fine-tuning (HiTZ)
- Include additional silver-labeled datasets ♥ (HiTZ)

#### Dialects - Results

#### Weighted-average F1-score %:

| Submission | В     | N     | Т     | V     | all   |
|------------|-------|-------|-------|-------|-------|
| HiTZ 2     | 75.40 | 78.44 | 85.95 | 87.45 | 84.17 |
| HiTZ 3     | 74.91 | 77.50 | 84.29 | 87.08 | 83.32 |
| HiTZ 1     | 74.10 | 75.72 | 83.97 | 86.61 | 82.71 |
| CUFE 1     | 68.93 | 73.38 | 80.26 | 84.14 | 79.64 |
| Baseline   | 57.38 | 73.46 | 77.76 | 82.59 | 77.42 |

- Systems struggle most with identifying Bokmål and Nordnorsk, the two varieties with least data (1 and 2 translators, respectively)
- Confusions between the Western (V) dialects and Bokmål are most common
- Also significant confusion between the non-adjacent dialect areas N and V



## **Takeaways**

- Intent identification is mostly solved, whereas slot and dialect identification show room for improvement:
  - Insufficient high-quality Norwegian training data
  - Inconsistencies in annotations
  - Unbalanced data distribution across the four dialect areas

## **Takeaways**

- Intent identification is mostly solved, whereas slot and dialect identification show room for improvement:
  - Insufficient high-quality Norwegian training data
  - Inconsistencies in annotations
  - Unbalanced data distribution across the four dialect areas
- Slot and intent scores for Norwegian are substantially higher than for other low-resource and dialect scenarios (SID4LR, Bavarian)
  - Is Norwegian dialect writing closer to standard?
  - Is there better cross-lingual transfer from English?

## **Takeaways**

- Intent identification is mostly solved, whereas slot and dialect identification show room for improvement:
  - Insufficient high-quality Norwegian training data
  - Inconsistencies in annotations
  - Unbalanced data distribution across the four dialect areas
- Slot and intent scores for Norwegian are substantially higher than for other low-resource and dialect scenarios (SID4LR, Bavarian)
  - Is Norwegian dialect writing closer to standard?
  - Is there better cross-lingual transfer from English?
- What kind of variation does the Norwegian data actually contain?
  - Is individual speaker variation (punctuation, word choices, translationese, ...) more salient than dialectal variation?

# Welcome Note VarDial 2025

VarDial Workshop and Shared Task Organizers

Abu Dhabi, UAE, January 2025

#### **Announcements**

Tutorial 6: Connecting Ideas in Lower-Resource Scenarios: NLP for National Varieties, Creoles, and Other Low-Resource Scenarios

**Organizers:** Aditya Joshi, Diptesh Kanojia, Heather Lent, Hour Kaing and Haiyue Song

**Time:** Tomorrow Monday, 09:00 - 17:30

**Location:** Conference Hall B (C)

#### **Announcements**

Tutorial 6: Connecting Ideas in Lower-Resource Scenarios: NLP for National Varieties, Creoles, and Other Low-Resource Scenarios

**Organizers:** Aditya Joshi, Diptesh Kanojia, Heather Lent, Hour Kaing and Haiyue Song

**Time:** Tomorrow Monday, 09:00 - 17:30

**Location:** Conference Hall B (C)

I have a 3-year postdoc opening at the University of Oslo!

Deadline: 6 April

