@ MaChAmp: Multi-task @

Learning to the Rescue in
Resource Scarce Scenarios
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language

Figure 2: What’s in a domain? Domain is an over-
loaded term. I propose to use the term variety.
A dataset is a sample from the variety space, a
unknown high-dimensional space, whose dimen-
sions contain (fuzzy) aspects such as language (or
dialect), topic or genre, and social factors (age, gen-
der, personality, etc.), amongst others. A domain
forms a region in this space, with some members
more prototypical than others.
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Language varieties that are annotated (in red)







What can we do?

» Annotate more?

» Cross-domain, cross-lingual learning
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Multi-task learning to the rescue!

Standard in NLP:
» Pre-train a language model on raw data (billions of words)

» Fine-tune the language model on NLP-annotated data
(thousands of words)
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Framework: MaChaMp

Massive Choice, Ample Tasks (MACHAMP):
ﬁ A Toolkit for Multi-task Learning in NLP @

Rob van der Goot® Ahmet Ustiin® Alan Ramponi® @  Ibrahim Sharaf@
Barbara Plank®
IT University of Copenhagen ®  University of Groningen ®  University of Trento @
Fondazione the Microsoft Research - University of Trento COSBI @  Factmata @
robv@itu.dk, a.ustun@rug.nl, alan.ramponi@unitn.it
ibrahim.sharaf@factmata.com, bapl@itu.dk
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MaChAmp

language

Contextualized Embeddings

process natural [MASK]

lets

|

<CLS>
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MaChAmp

VERB VERB ADJ NOUN

<CLS> lets process natural language
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» This is the default setup for all NLP tasks these days; sharing
happens over time: MLM = TGT task

» MaChAmp can do much more!, we add multi-task learning
after the first step
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MaChAmp Examples of tasks
Input Output
classification

Smell ya later! negative

mim
Gotta [MASK] em all  catch
multiclas

That will be 55 inform|request
multiseq

| never caught Snorlax per:1|n:sin _ tens:past n:sin

o ining ighi
sequential training layer atte regression
FReR R TR S

You're playing cats 12

MaCha&mp is a multi-task NLP olkit, seq
1% can seemingly efort! fiiih:‘l‘:d'?t | want to be the best PRN VB PART AUX DT ADJ
=SupPOrts a wide variety o P tasks, 0
ShEl zan eeoll i sl malEETE seq_bio
arasets at ene Ash from Pallet Town  Ash:PERS Pallet Town:LOC
— J =
ol

Gary, Gary, he's the man. Gary , Gary , he 's the man
dependency

Brock wants to fight Brock wants to fight

Rob van der Goot
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Examples of tasks

Input Output
classification

Smell ya later! negative
mim

Gotta [MASK] em all catch

multiclas
That will be 5%

inform|request

multiseq
| never caught Snorlax

per:1jn:sin _ tens:past n:sin

regression

You're playing cats 1.2
seq

| want to be the best PRN VB PART AUX DT ADJ
seq__bio

Ash from Pallet Town

Ash:PERS Pallet Town:LOC

tok
Gary, Gary, he's the man.

Gary , Gary , he 's the man .

dependency
Brock wants to fight

oo comp]-

Brock wants to fight
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xSID: Cross-lingual Slot and Intent Detection

) Rob van der Goot, Ibrahim Sharaf, Aizhan Imankulova, Ahmet
Ustiin, Marija Stepanovi¢, Alan Ramponi, Siti Oryza Khairunnisa,
Mamoru Komachi and Barbara Plank
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Slot and Intent Detection

I'd like to see the showtimes for _ at the _

Intent: SearchScreeningEvent
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xSID

v [ (Sily Movie 20,

da Jeg vil gerne se spilletiderne for

3 o aslee ) 0l ol

de Ich wiirde gerne den Vorstellungsbeginn fiir
de-st | mecht es Programm fir
en I'd like to see the showtimes for
id Saya ingin melihat jam tayang untuk

it Mi piacerebbe vedere gli orari degli spettacoli per al -
i | o EWE % R T,
kk MeH bargapnaMachiHbIb, KOPCETINIM yaKbITbIH KOPriM Kenegi

zien

sr Zelela bih da vidim raspored prikazivanja za -
tr [Silly Movie 2.0 ISNSTRSNESIBMURERRY <e-rs'ari g5rmekstiyorum

o 5o SIS« ik

nl Ik wil graag de speeltijden van
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Experiments

Baselines

> Baseline: contextualized embeddings with joint intent+slots
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Baseline

cancel alarm O @) O  Datetime

.

<CLS> cancel alarms for tomorrow
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Experiments

Baselines
» Baseline: contextualized embeddings with joint intent+slots

» Stronger baseline: translate training data to target language
and map slot labels with attention (NMT-TRANSFER)
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Experiments

Baselines
» Baseline: contextualized embeddings with joint intent+slots
» Stronger baseline: translate training data to target language
and map slot labels with attention (NMT-TRANSFER)
New models:

» Train on auxiliary task in target language:

» Masked language modeling (AUX-MLM)
» Neural machine translation (AUX-NMT)
» UD-parsing (AUX-UD)
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» MLM:

> NMT:

» UD-parsing:

U T Y-

TaLRON DS MO Bkas v o owas  omesyoeow) o v
Resource-aware machine leaming % Ressourcebevidst maskinlering £
Y nm @ 0 & <

Utterance: en wy binne grensverleggend
UPOS:  CCONJ PRON AUX ADJ

Lang. labels:  FY FY FY NL
English: and we are groundbreaking

20/1



Experiments

Evaluate 2 embeddings
» mBERT: trained on 104 languages (12/13)
» XLM15: trained on 15 languages (5/13)
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Results

Table: Average minutes to train a model, averaged over all languages and
both embeddings. For nmt-transfer we include the training of the NMT

model.

model Time (minutes)
base 46
nmt-transfer 5,213
aux-mlm 193
aux-nmt 373
aux-ud 79
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Results (intents)

Accuracy
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Results (slots)

Span-F1
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Results (slots)
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Conclusions

Sentence level:
» NMT-transfer is hard to outperform, but costly
» Even baseline hard to beat

Span level:
» NMT-transfer performs bad (due to alignment)
» In-LM languages: only MLM helps

» Out-LM languages: More explicit tasks (UD) are faster and
lead to better performance
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Open questions

Can NMT be used as auxiliary task?

Are there better sentence level auxiliary tasks?

NMT and MLM hyperparameters

>
>
» Can NMT-transfer be improved with better word alignment?
>
» Modeling jointly versus sequentially
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How do we minimize memory in MaChAmp?
> |t is based on language models, which are transformer-based.

» Transformer layers consider the whole input at once
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Input to system is a batch of size 32*%512:
P> 32 sentences

» max 512 words: if more, we simply split up the sentence
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We train a dependency parser on the English Web Treebank:
> 12,544 sentences; longest one 211 words
» Memory usage: 16GB!
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We train a dependency parser on the English Web Treebank:
> 12,544 sentences; longest one 211 words
» Memory usage: 16GB!
» Goal: fit in 10GB
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lets split up sentences after 128 words!:
> 16GB = 12GB!
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lets split up sentences after 128 words!:
> 16GB = 12GB!

» Note that splitting affects the input
» Effect on performance negligible

» > 128 = not very frequent
> Still has access to context in one direction (and context is
longer for long sentences)
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How to limit further?
» Batch size of 16 = lower performance

» Maximum words in batch (does this matter?)
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Max 1024 words in batches of shape 32*128:
» 9.5GB!

» Probably because the batches are not all of size 32 anymore?
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What about NLP for Danish?
» DaN+: Named entity recognition for Danish
» MultiLexNorm: lexical normalization of Arto data
» DanTok: POS tagging for Danish social media data
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DanTok

» First NLP dataset on TikTok data
» First Danish social media POS tagging data

» Originally created for teaching: now in submission
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DanTok:

)

@username .
nér du laver en nyt dataset '

#danskememes

+ please se dn @username @

+ HVA ER DET HER?!!

Token Norm POS Lang Uncertain
please Please INTJ CHIRS=INIIZE, 0
Lang=en
se se VERB Lang=da 0
dn den PRON Lang=da 1
Qusername Qusername PROPN Lang=da 0
(] (] SYM Lang=da 0
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Research purpose:
» Investigate the effect of training data of POS tagger and MLM
pre-training
» There is no Danish social media (only) trained LM or POS
tagging training data
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Data +D-L -D+L

Model TwB DDT
- DANISH-BERT | 49.60 |[77.98
& ROBERTA | 60.82 [70.17
' ALECTRA | 63.30 |74.20
- BERTWEET-B | 38.00 67.90
(@] BERTWEET-L | 36.55 67.40
+ TWITTER-ROB | 37.30 64.05
j— TWITTER-XLM | |77.15) 72.15
a BERNICE | |78.22]| 72.95
+ TWHIN | |81.38] 72.65

Table: POS Tagging accuracy on the DanTok development set using
combinations of in/out-of-domain (+D/-D) models and training data as
well as in/out-of-language (+L/-L) models and training data.
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Subset Accuracy

All 85.9
Uncertain 62.1
Normalized 70.8
Unseen 83.3

Table: POS tagging accuracy for subsets of words
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Conclusions:

» In-domain multilingual LM’s with in-domain training data
outperform Danish models!

> POS taggers struggle with the same cases as humans!
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Tusind tak for i dagl



