
Normalization for Dutch for

improved POS tagging

Youri Schuur

Master thesis
Information Science
Youri Schuur
s2748428

March 17, 2020

A B S T R A C T

Non-standard language in user generated content causes problems
for many NLP tasks, for example Part-of-speech tagging. Various
NLP researchers argue that normalizing the non-standard language
into standard language is a possible solution. Multiple studies re-
port improved scores for NLP tasks after normalizing English data.
However, for other languages not much research has been done on
normalizing non-standard language and what impact it has on NLP
tasks. In this thesis, collected Dutch user generated content from three
domains was normalized using a state-of-the-art normalization model
after which both the original data and the normalized data was POS
tagged and evaluated. The performance of the tagger improved by
44%, 26% and 13% for chats, SMS messages and tweets respectively.
These results show that by normalizing Dutch user generated content
the tagger was able to achieve higher accuracy scores. Thus, by nor-
malizing non-standard Dutch language the performance of the POS
tagger improved significantly.

i

C O N T E N T S

Abstract i
Preface iii
1 introduction 1

2 background 4

2.1 POS Tagging . 4

2.2 Normalization . 5

Candidate generation 7

Candidate ranking 8

3 data and material 10

3.1 Collection . 10

3.1.1 SoNar New Media Corpus 11

SMS Messages . 11

Chats . 12

Tweets . 12

3.1.2 RUG Tweets . 13

3.2 Annotation . 14

3.2.1 Guidelines . 14

3.2.2 Inter annotator agreement scores 15

4 method 16

4.1 Normalization . 16

4.2 POS Tagging . 17

5 evaluation 19

5.1 Normalization . 19

5.1.1 Evaluation metrics 19

5.1.2 Evaluation MoNoise on noisy Dutch data 22

5.2 POS Tagging . 24

5.2.1 Chats . 24

5.2.2 SMS messages . 26

5.2.3 Tweets . 27

5.3 Discussion . 28

6 conclusion 30

a annotation guidelines 31

ii

P R E FA C E

I would like to thank my supervisors prof. dr. G.J.M. van Noord
and Rob van der Goot for instructing me during the process of me
writing a thesis and for giving me the feedback I needed to improve
and finish my thesis.

iii

1 I N T R O D U C T I O N

The rise of social media has caused a lot of changes within language
over the last decade. For computational linguistics, this is an interest-
ing development. These changes to language causes a lot of problems
for computational linguistics, that is why Eisenstein (2013) calls this
"new" language which largely emerges online via social media bad
language. However, since the data that are available on social me-
dia keeps growing, it has become a domain that computational lin-
guistics can not ignore. Especially natural language processing (NLP)
tasks are much more complicated nowadays. Often, NLP models are
trained on standard language. An example of standard language is
the Wall Street Journal. In the late 80s, the Penn Treebank Wall Street
Journal corpus was commonly used as a NLP benchmark for many
tasks (Part-of-speech-tagging, parsing). Plank (2016) argues that this
perception about a standard language is biased and wonders what
would have happened if NLP had emerged in the last decade. Maybe
the social media data would be considered as standard? The almost
unlimited data that is available on social media is very exciting. Der-
czynski et al. (2013) states that non-standard language is often noisy.
The noise in the data has its consequences, many models can not
achieve the accuracy scores that were achieved for standard language.

An interesting question is why language on social media is so
different. Social media consists of Twitter, blogs, forums etc. Most
of the time, researchers use Twitter as their source to collect data.
Twitter is a micro blogging service and has replaced sources like SMS
messages. An advantage of Twitter is that a lot of the the data is
public, which makes it easy to collect the data. Users from every
country and region can post something on social media. In contrary,
the Penn Treebank Wall Street Journal was written en edited mostly
by working-age men (Derczynski et al., 2013). Thus, it makes sense
that these domains differ a lot. Eisenstein (2013) states that there are a
few reasons why language on Twitter is different: people are unsure
of the correct spellings, it is faster, it has become the norm and people
want to represent their own dialect. For Twitter, another reason is the
length limit of a tweet. As of 7 september 2017, tweets are allowed
to have 280 characters. Before, only 140 characters were allowed in a
tweet, therefore, words like about are being written as bout. Further,
factors like emoticons, phrasal abbreviations (e.g., LOL, SMH) and
lengthening (e.g., coooolll) all play roles in the user generated content
(Eisenstein, 2013). Social variables also play a role in language like age

1

introduction 2

and location. These social variables are often associated with many
features that display user generated content. Social media users often
use non-standard language to show an affiliation with a region or a
city (Eisenstein, 2013).

The last few years, computational linguistics has done a great
deal of research on how to deal with non-standard language in nat-
ural language processing. Simply annotating more data seemed the
most evident way to solve this problem. However, Eisenstein (2013);
Plank (2016) do not think this is the ideal solution. Eisenstein (2013)
shows in his paper that the out-of-vocubalary (OOV) words rate in-
creases not only every year, but every day. This suggests that language
changes constantly and Eisenstein (2013) states that "We cannot anno-
tate our way out of this language problem". Plank (2016) agrees on
this and adds "What we annotate today might be very distant to what
we need to process tomorrow".

Another way to deal with non-standard language is by normalizing
the bad language. Eisenstein (2013); Plank (2016); Derczynski et al.
(2013) were all interested in normalizing the OOV words to reduce
the noise in social media data. (Lexical) normalization is the task of
converting non-standard language (e.g., wit) into standard-language
(e.g., with). van der Goot and van Noord (2017) have proven that
their model is able to normalize non-standard language into standard
language. This approach should be investigated more since it might
increase performance on various NLP tasks. Therefore, for this the-
sis, I want to investigate whether the normalization of non-standard
language found on social media can improve the performance on a
NLP task. In this case, I will be focusing on one specific NLP task,
Part-of-speech tagging of Dutch non-standard language. POS tagging
is a key task within NLP and there are Dutch models that are able to
reach an accuracy on POS tagging of around 90% 1. However, there
is very little known of how Dutch POS tagging models perform when
tested on non-standard language. With this realisation I was able to
form the following research question.

• To what extent can we improve POS tagging by normalizing
Dutch user generated content?

To answer this research question, collected non-standard language
from three domains will be normalized after which we will POS tag
both the non-normalized data and the normalized data. Subsequently,
we will evaluate the performance of the POS tagger for both datasets.
Finally, the scores for both datasets will be compared and a conclu-
sion is drawn on whether the performance of the tagger improved
by normalizing the data. In order to conduct this experiment, multi-
ple aspects will be discussed within this thesis. In the next chapter,

1 https://spacy.io/models/nl

introduction 3

previous work on normalization and POS tagging will be handled.
In the third chapter the data and the material will be discussed. In
the first section of the third chapter, I will explain how the data was
collected. Subsequently, I will discuss how the data was annotated.
In chapter four the setup of the experiment will be addressed. The
experiment consists of two parts. Firstly, the normalization model of
van der Goot (2019) will be tested on the collected data from three dif-
ferent domains. Secondly, the original- and the normalized data will
both be POS tagged. Finally, the scores for POS tagging on both the
original non-normalized data and the normalized data will be com-
pared to each other. The results of this experiment will be evaluated
and discussed in chapter five. Ultimately, in chapter 6, the research
question will be answered.

2 B A C KG R O U N D

In this chapter I will look into previous research that has been done on
the subjects that are of importance for my research. This section will
be divided into two parts. Firstly, previous research on POS tagging
will be addressed. Consequently, previous work on normalization
will be discussed.

2.1 pos tagging
It is well known that Part-of-speech taggers are able to achieve scores
around the 97% on news texts for a while now (Toutanova et al., 2003).
We have seen multiple POS tagging techniques over the last decade.
Statistical approaches (N-Gram,Hidden Markov Model) and transfor-
mation based approaches (Brill’s tagger) have been implemented for
POS tagging. Thus, a lot of research has been done on the POS tag-
ging the last 2 decades.

In the previous chapter, I have already talked about the impact
of social media on NLP tasks like POS tagging. The score on POS
tagging mentioned above (97%) was achieved by using news texts as
data input. POS tagging scores high in the nineties are almost al-
ways only achieved when the data consists of standard language (like
news texts). But how do POS taggers perform when they have to deal
with non-standard language? Various articles have shown how state-
of-the-art natural language processing (NLP) systems perform signi-
cantly worse on social media data (Eisenstein, 2013). In part-of-speech
tagging, the accuracy of the Stanford tagger (Toutanova et al., 2003)
decreases from 97% accuracy on Wall Street Journal text to 85% accu-
racy on Twitter (Gimpel et al., 2010). Further, Derczynski et al. (2013)
looked into the problem of how we can overcome noisy data when
POS tagging. In their article, they present a novel approach based
on vote-constrained bootstrapping with unlabeled data. They also
assigned prior probabilities to some tokens and handled unknown
words and slang. By using these features, they achieved a POS tag-
ging accuracy of 88.7%. They also reduced token error by 26.8% and
sentence error by 12.2% (Derczynski et al., 2013). Furthermore, Plank
(2016) addressed the problem of non-standard language in NLP. She
used multiple domains in her research, for example the Wall Street
Journal (WSJ) and Twitter. Some interesting results were found when
she tested POS tagging cross-domain. When the POS tagger was

4

2.2 normalization 5

trained on WSJ data and also tested on the WSJ data, naturally, very
high scores were reached with the TnT and BILTY tagger (96.63% and
97.25% respectively). However, when those POS taggers were trained
on WSJ data and tested on Twitter data the scores fell quite a bit.
The TnT tagger only achieved a score of 65.98% and the BILTY tag-
ger scored a little bit better with 66.37%. Interestingly, when Plank
(2016) used another Twitter corpus, the BILTY tagger achieved scores
around the 90% while trained on the WSJ data. This tells us that
within a very broad domain like Twitter, multiple domains exists and,
for that reason, it is very challenging to achieve good tagging scores
on non-standard language data.

Very little research has been done on this subject for the Dutch lan-
guage. I found an interesting article on cross-domain POS tagging by
Hupkes and Bod (2016). However, instead of social media data, his-
torical Dutch data was used for their research. They wanted to know
whether historical Dutch texts can be tagged with a decent accuracy
while trained on contemporary Dutch texts. Hupkes and Bod (2016)
concluded that POS taggers for contemporary Ducth data do not work
well for historical Dutch data. The POS tags for the historical Dutch
data were only accurately tagged 60% of the time. An analysis of the
errors showed that the decrease in accuracy is mostly caused by the
fact that many of the words in the other domain are unknown to the
tagger (Hupkes and Bod, 2016).

2.2 normalization
In the previous section, various consequences that come with new
non-standard language/user generated content have been discussed.
Normalization could be part of a solution for the problem of non-
standard language on social media. In this section, some previous
work on normalizing data will be addressed.

The first normalization of user generated content experiments were
focused on SMS texts. A dataset was annotated by Choudhury et al.
(2007) for this domain. A Hidden Markov Model was used to model
the word variation in the data based on characters and phonemic tran-
scriptions. They used the Viterbi algorithm to find the most likely
replacement for each position.

In the following years, the focus shifted to social media, especially
Twitter because of the large amount of data that is available. Han
and Baldwin (2011) were the first to experiment with the normaliza-
tion of Twitter data. They created a corpus called the LexNorm Corpus
which consisted of 549 annotated sentences with normalization on
the word level. Han and Baldwin (2011) reported results of training
a Support Vector Machine (SVM) which predicts whether a certain

2.2 normalization 6

word needs normalization or not based on dependency tree context.
The replacement candidates were generated by using a combination
of word similarity, N-Gram possibilities (unigrams, bigrams) and dic-
tionary lookup.

The last decade, various approaches have been benchmarked on
the LexNorm corpus. Yang and Eisenstein (2013) experimented with
a log-lineair model. They used a sequential Monte Carlo algorithm to
determine feature expectation after which they would rank the can-
didates using the Viterbi algorithm. Li and Liu (2015) reached the
highest accuracy on the LexNorm corpus. They used multiple nor-
malization systems among them a machine translation system and a
spell checker. Those systems all would suggest one candidate and a
Viterbi algorithm was used to rank the candidates based on their POS
tags.

Most of the research on normalizing non-standard language has
been done for English. However, it is important that these kind of
models also perform well for other languages. In this thesis, we are
focusing on normalizing Dutch data. Not many reports are available
online on the normalization of Dutch data. De Clercq et al. (2014)
annotated a Dutch normalization corpus collected from three user
generated domains; SMS messages, SNS messages (message board
posts from a social networking site) and Tweets. They experimented
with machine translation on a word and character level and saw a 20%
increase of their BLEU score by testing the model on their annotated
normalization corpus.

Schultz extended the work of De Clercq et al. (2014) by building
a multi modular system to normalize Dutch data. Each module dealt
with a different normalization problem. This system consists of ma-
chine translation models, look-up lists, spell checker and some more
features. They reported that their system scored a 24.6% Word Error
Rate (baseline) before the normalization and a 14.9% Word Error Rate
after the normalization. Further, they also report an improvement on
POS tagging. Before normalizing the data, the POS tagger achieved
an accuracy of 66.1% while afterwards the tagger reached an accuracy
of 73.5%.

2.2 normalization 7

Recently, van der Goot and van Noord (2017) proposed a super-
vised normalization system called MoNoise. They report that their
system beats state-of-the-art benchmarks for normalization which is
why this normalization system was also used to conduct to the exper-
iment for this thesis. We will take a deeper look into this model in the
next subsections. Their normalization model consists of two parts:

1. Candidate generation

2. Candidate ranking

Candidate generation

For the generation of the candidates, multiple modules are involved.
Since no error detection steps are included, the orginal token has
to be in the candidate list. The next module is is a skip-gram word
embeddings model from word2vec (Mikolov et al., 2013). For each
word, the top 40 most likely candidates in the vector space are found
based on the cosine distance. Typographical errors were checked by
the use of the Aspell spell checker (van der Goot, 2019) 1. Similarly
looking and sounding words are generated by looking at the combi-
nation of character edit distance and phonetic distance. Further, a
lookup-list is used. This lookup-list consists of replacement pairs in
the training data. When a word that occurs in this list is found, every
normalization replacement that occurs in the training data is seen as
a candidate. Abbreviations are very common in social media texts. A
special module called Word* deals with this matter. The module sim-
ply looks in the Aspell dictionary for words that start with the same
sequence of characters as the original word. This module is only ac-
tivated if the word contains more than two characters, otherwise way
too many candidates would be generated. The final module generates
candidates by looking at word splits. The word is splitted on every
possible position. If the split results in two words that are found in
the Aspell dictionary, the words are added as candidate. The split
module is only activated if the word contains at least three characters.

1 https://packages.debian.org/sid/aspell-nl

2.2 normalization 8

Candidate ranking

For the ranking of the candidates, various features are used. For exam-
ple, original token is a binary feature that indicates whether a candi-
date is the original token and word embeddings is a feature in which
the cosine distance between the original token and the candidate is
used. Further, the aspell feature returns a ranked list of correction
candidates, the rank in this list is used as a feature. Another feature
is the Lookup-list. This feature counts the occurrences of every cor-
rection pair in the training data. Furthermore, two N-Grams models
calculate the unigram and bigram probabilities. The first N-Gram
model is trained on Twitter data while the second model is trained
on Wikipedia data. Two binary features are the dictionary lookup
feature which checks whether the candidate is present in the aspell
dictionary and the character order feature indicating if the characters
of the original token occur in the same order in the candidate that
is proposed. Finally, a binary feature is used to check whether the
token contains any alphabetical characters. All features are explained
in depth in the thesis of van der Goot (2019).

The system was tested on multiple test datasets and compared to
multiple state-of-the-art benchmarks for normalization (see table 3).
The normalization corpora van der Goot (2019) used to test MoNoise
are described in table 1. "Caps" indicates whether capitals are con-
sidered in the corpus. "1-N" indicates whether one-to-many normal-
ization was considered in the corpus. "% normalized" indicates what
percentage of all the tokens in the corpus were in need of normaliza-
tion.

Table 1: Comparison of the normalization corpora used to test MoNoise

Corpus Words Language % Normalized Caps 1-N
GhentNorm 12.901 NL 4.8 Yes Yes
TweetNorm 13.542 ES 6.3 Yes Yes
LexNorm2015 73.806 EN 9.1 Yes No

2.2 normalization 9

The results of the tests on these corpora are shown in table 2. Ac-
cording to van der Goot (2019) the results of MoNoise can differ per
domain/corpus due to several factors:

• Size of training data

• The raw data used to train word embeddings. Also: differences
between train- and test data can impact the scores.

• Annotation guidelines: easy normalization replacements like
very common abbreviations can impact the score.

Table 2: Results MoNoise on different normalization corpora

Corpus Recall Precision ERR
GhentNorm 50.77 86.84 44.62

TweetNorm 37.09 90.05 35.86

LexNorm2015 80.58 91.98 76.15

Further, they also did an extrinsic evaluation, which is also inter-
esting for this research. To test whether they could improve POS tag-
ging by using normalization, a bidirectional LSTM POS tagger Bilty,
trained and tested on the data from Li and Liu (2015) was prepro-
cessed by MoNoise. This led to an improvement in accuracy of 1.24%
(88.53 to 89.63). Finally, van der Goot and van Noord (2017) con-
cluded that MoNoise is able to reach a new state-of-the-art for all
benchmarks. MoNoise is also able to generalize over different anno-
tated data. Candidates are often correcly generated by using spelling
correction combined with word embeddings. To rank the candidates,
van der Goot and van Noord (2017) states that a Random Forest Clas-
sifier (Breiman, 2001) is able to learn to generalize over multiple nor-
malization actions fairly well.

Table 3: Results on test data compared to the previous state-of-the-art

Corpus Prev. state-of-the-art Metric Prev MoNoise
GhentNorm Schultz et al.(2016) WER 3.2 1.36

TweetNorm Porta and Sancho (2013) OOV-Precision 63.4 70.57

LexNorm2015 Li and Liu (2015) Accuracy 87.58 87.63

3 DATA A N D M AT E R I A L

In this chapter of this thesis, I will discuss the data that is used to
investigate what the impact of normalization is on POS tagging. In
order to do this, user generated content that can be normalized is
needed. Then, both the original data as well as the normalized data
will be POS tagged. By comparing the performance of the tagger on
both these data sets to each other the impact of the normalization
will be measured. This chapter consists of two sections. In the first
section I will describe what my data collection looks like and how it
was obtained. In the second section I will address how the data was
annotated. In this section I will shortly go in to the annotation guide-
lines. Furthermore, annotator agreement scores will be evaluated in
this section to check the quality of the annotations.

3.1 collection
In order to conduct my research, I had to collect a lot of noisy Dutch
data. The SoNar New Media corpus consists of three domains, these
domains are described below in subsection 3.1.1. I decided to collect
500 noisy sentences per domain for my research. Thus, in total, 1500

sentences were collected. The sentences were split in train, develop-
ment and test sets. In order to collect noisy data, I used an algorithm
that checked whether a token was an OOV (Out Of Vocubulary) word
by using the Aspell Dutch dictionary. If the token was not found in
the dictionary, it was classified as an OOV word. I only collected a
sentence when it contained at least four OOV words. This way I could
be sure that all collected sentences consisted of some type of noise. I
also checked whether a token was English, by using the same method,
thus, using the Aspell English dictionary. If a sentence contained four
or more English words, the sentence was not collected since I was not
interested in English sentences. By using this algorithm I filtered out
a lot data, especially tweets. In fact, very little usable noisy tweets
remained in this corpus (see Tweets in subsection SoNar New Media
Corpus). Therefore, I ended up using data form two different corpora
to collect all the sentences.

10

3.1 collection 11

3.1.1 SoNar New Media Corpus

Via the Institution of Dutch language (Instituut voor de Nederlandse
taal) I found an interesting corpus called the SoNar New Media Cor-
pus. This corpus contains news media texts that were collected for the
STEVIN-project SoNaR and is available for download at the website of
the Institution of Dutch language 1. The corpus consists of 3 domains:
SMS messages, Chats and Tweets. The SMS messages were provided
by individuals who gave permission for the use of their messages for
the benefit of the corpus. The chats were collected via public Inter-
net forums. Lastly, the tweets were obviously collected on Twitter. I
chose to work with this corpus because it consists of 3 domains (SMS,
Chats, Tweets) that are considered social media. As explained in the in-
tro, noisy non-standard language is mainly used in social media. An
important thing to note is that all three domains of the SoNar New
Media Corpus also contain Flemish sentences. Furthermore, I also
came across multiple dialects within the Dutch language in all three
domains of the corpus. In the next subsections, we will take a look
at each of the three domains of the SoNar New Media Corpus (Oost-
dijk et al., 2013). In table 4 the number of collected sentences from all
three domains are shown. As you can see, I was able to collect only
381 noisy usable tweets. However, I wanted my data collection for all
three domains to consist of 500 sentences. In subsection Tweets I will
address this problem.

Table 4: Collected noisy sentences from SoNar New Media Corpus

SMS Chats Tweets
Train dataset 300 300 181
Dev dataset 100 100 100

Test dataset 100 100 100

Total 500 500 381

SMS Messages

The SMS corpus in SoNaR is a collection of Short Message Service
messages. These messages were collected in The Netherlands and
Flaunders between September and December, 2011. Only messages
that were sent by the contributor are included in the corpus. The SMS
messages were tokenized with UCTO. UCTO is an advanced rule-
based unicode aware tokenizer. UCTO tokenizes text files: it separates
words from punctuation, and splits sentences. It offers several other
basic preprocessing steps such as changing case that you can all use to
make your text suited for further processing such as indexing, part-of-

1 https://ivdnt.org/downloads/taalmaterialen/tstc-sonar-nieuwe-media-corpus-1

3.1 collection 12

speech tagging, or machine translation (Maarten van Gompel, 2018).
In total, this domain consisted of 723,876 words.

Chats

Besides SMS messages, the SoNar New Media Corpus also consisted
of chats, which are real time typed conversations over a computer net-
work between two or more people. Like the SMS messages, the chat
messages were tokenized with UCTO. The chat data was collected
from multiple sources. Most of the sources were Dutch, for example,
MSN messages (A total of 1,056 chat sessions) were collected for this
corpus. In total, the Dutch data in this domain counted 737,520 word
tokens. However, not all data sources were Dutch. Also Flemish data
was collected from chat.be 2. This is a Flemish website from which
chat messages were collected between March 4, 2011 and February
11, 2012. The chats are from the main chat channel of the site. This
explains why this domain also consists of a lot of Flemish messages.
Is is not reported how many tokens this Flemish corpus consists of.

Tweets

The third domain from the SoNar New Media Corpus I will address
is Twitter. Only tweets that were publicly available were collected. In
general, only Dutch tweets were collected. However, Oostdijk et al.
(2013) states that "Some twitterers publish tweets both in Dutch and
in another language, primarily English". Twitterers who only pub-
lish in non-Dutch were removed from the corpus, but no language
detection was done to remove single tweets that are non-Dutch. As a
consequence quite a few English tweets ended up in the SoNaR cor-
pus. Like the SMS and chat messages, the tweets were tokenized with
UCTO. With a total 0f 23,197,211 words, the Twitter corpus was by
far the largest data source from the SoNar New Media Corpus. Al-
though Twitter was the largest data source out of the three domains
of SoNar, it was also by far the noisiest data source. Even though I
needed noisy data for my research, most of the Twitter data was not
useful for this research. Like Oostdijk et al. (2013) stated, the data
consisted of many English tweets. Furthermore, when I looked into
the data, I also came across many other languages besides Dutch and
English in the Twitter data. A large amount of tweets were written
in German for example. Therefore, I added a check for German to-
kens in the algorithm by looking whether the token existed in the
Aspell German dictionary. After applying the algorithm, not enough
usable tweets were retrieved (< 500). For this reason, the algorithm
was slightly tweaked. Instead of collecting a tweet when it contained
at least four OOV tokens, I started collecting tweets that contained at

2 www.chat.be

3.1 collection 13

least three OOV tokens. This way I was able to collect some more
noisy usable tweets. However, this way I was only able to collect 381

tweets. This still were not enough tweets since I wanted my datatsets
to exist of 500 instances for all three domains. Therefore, I decided I
needed another data source to collect noisy Tweets. This data source
is discussed in the next subsection.

3.1.2 RUG Tweets

In order to conduct my research, I had to collect more tweets. Fortu-
nately, The LWP workspace on the computers at the University of
Groningen (RUG) provides a corpus named twitter2 that contains
Dutch tweets from 2019. This corpus was collected by Tjong Kim
Sang (2013) and the methodology of this data collection is described
in the article of Erik and van den Bosch (2013). They collected bil-
lions of tweets by using the filter of Twitter’s streaming API. With
this software it is possible to collect tweets based on keywords in
the messages or the names of the users that sent the messages. For
their collection, they were only interested in Dutch tweets. Two meth-
ods were used to collect tweets. First, they searched for 229 Dutch
words/hashtags. Most of these words are common Dutch words
that are used frequently. The second method to collect the tweets
was to collect all tweets from 5.000 users who post tweets very fre-
quently. It is only allowed to track 5.000 users on Twitter, thus, with
this method not the maximum of messages that can be retrieved are
being retrieved (50 tweets per second). These are two nice methods to
collect a lot of tweets, however, sometimes non-Dutch messages still
slip through the filter. In order to decrease the non-Dutch tweets a
language checker was applied. They chose libTextCat as a language
checker for this task. LibTextCat was developed by Frank van Schee-
len from WiseGuys based on the work by Gertjan van Noord 3. After
the language was checked a simple Dutch tokenizer was used to sepa-
rate the words from punctuation characters. The tokenizer also added
a white space before and after every character in the tweet if that char-
acter was neither a digit nor a letter (Erik and van den Bosch, 2013).

Ultimately, I ended up collecting 119 tweets from the twitter2 cor-
pus. All these tweets were sent in August 2019. Since 381 tweets were
already collected from the SoNar New Media Corpus the complete
twitter collection now contained 500 tweets. In table 5 some statistics
about the collected data from the three different domains are shown.

3 https://software.wise-guys.nl/libtextcat/

3.2 annotation 14

Table 5: Comparison of the collected data from the three different domains

Corpus Words Language % Normalized Caps 1-N
Chats 5.193 NL 49.6 Yes Yes
SMS 5.645 NL 26.6 Yes Yes
Tweets 12.901 NL 21.5 Yes Yes

3.2 annotation
In this section the task of annotating Dutch user generated content
will be addressed. In the first part of this section the created anno-
tation guidelines for the normalization task will be discussed. To
make sure these guidelines are consistent and clear for the annota-
tors, inter annotator agreement scores were calculated. These scores
are reported in the second part of this section.

3.2.1 Guidelines

Before training an automatic normalization model it is important to
manually annotate the non-standard language into its standard form
and create a gold standard. In order to standardize the manual nor-
malization for Dutch user generated content, it is helpful to lay down
some rules for the annotator. All these rules together form the anno-
tation guidelines. One of the few articles in which annotation guide-
lines for normalization for Dutch user generated content have been
reported is provided by De Clercq et al. (2014). Their annotation pro-
cess consists of two parts. Firstly, the actual text normalization is
handled by clearing tokenization problems, determining all needed
operations to get the normalized word and to write down the ac-
tual full normalized word. The second part of the annotation process
consists of flagging additional information that might be helpful for
other language processing purposes. For researchers whose goal it
is develop an improved normalization model for Dutch (or English)
these annotation guidelines are excellent because they are very de-
tailed. However, since this was not the goal for this research, the
annotation guidelines that are used for my experiments are based on
the more simplistic guidelines written by Baldwin et al. (2015a). These
guidelines were created as part of the shared task of the 2015 work-
shop on noisy user generated text (Baldwin et al., 2015b). This task
consists of normalizing English twitter messages randomly collected
from public streaming API. Spelling errors ("commitee" for "commit-
tee"), informal abbreviations ("tmrw" for "tomorrow") and phonetic
substitutions ("4eva" for "forever") are seen as non-standard words
(NSW). If a NSW is seen in a tweet, the standard form should be
given next to the NSW. The guidelines consists of 10 rules and are cre-

3.2 annotation 15

ated for English normalization. In order to use these guidelines for
Dutch normalization, these guidelines were slightly adjusted. For the
complete annotation guidelines for this research I refer to Appendix A.

3.2.2 Inter annotator agreement scores

Often in linguistics, it is hard to determine a classical definition with
necessary and sufficient conditions for certain categories. For this
reason, calculating inner annotator agreement might be wise when
classifying linguistic categories. A corpus annotator decides what
annotations are being made. However, as user of the annotated data
you want to know to what extent the annotations are actually correct
and consistent. Inter annotator agreement is a measure of how well
two (or more) annotators can make the same annotation decision for
a certain category 4. The inter annotator agreement score tells us
whether the annotations are trustworthy. Further, it also could also
tell us something about the difficulty of the annotation task. For this
research, Cohen’s Kappa was used to measure the inter agreement on
whether a word should be normalized or not. For all three domains,
the Kappa score was above 0.75 (0.91 , 0.77 and 0.80 for Chats, SMS
and Tweets respectively) which is seen as a strong level of agreement
5. Below in table 6 some examples of disagreements are displayed.

Table 6: Examples of disagreements per domain

Original token Annotator 1 Annotator 2
Chats dynabyte dynabyte Dynabyte
SMS bedje bedje bed

Tweets vakantiecolonie vakantiekolonie vakantiecolonie

4 https://corpuslinguisticmethods.wordpress.com/2014/01/15/what-is-inter-
annotator-agreement/

5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/

4 M E T H O D

In this chapter I will address how I conducted my experiment. This
chapter will be divided into two parts. Firstly, the normalization part
of the experiment will be discussed. How was the data processed
for the normalization system and how did I ran the system? In the
second part of this chapter, the POS tagging part of the experiment
will be explained. Thus, what POS tagger and tagset was used? And
how was the alignment of words done when the length of a sentence
of the tagged test data differed from the tagged gold data in order to
evaluate the system?

4.1 normalization
It has already been mentioned in this thesis that MoNoise (van der
Goot and van Noord, 2017) was used as a model to normalize tokens.
In order to run this model, collected data was needed to train and test
the system. For more information about the data I refer to chapter
3. Further, the data also needed to be processed in a certain way.
Below is shown how one line of the data file given as input for the
normalization system should look like.

Table 7: Format of one line from datasets for MoNoise

Original token <tab> <placeholder> <tab> Normalized token

In this format the character ’X’ was used as a placeholder. Note
that a sentence contains multiple lines in the format described in table
7. Between the sentences a white line was added. Below in table 8 an
example of a full sentence from the collected data is displayed.

Table 8: An example of a Dutch sentence processed for MoNoise

ik <tab> X <tab> Ik
gon <tab> X <tab> ga
ni <tab> X <tab> niet

blyve <tab> X <tab> blijven
prate <tab> X <tab> praten

After all the data was processed into the correct format it was time
to run the normalization model. However, a lot of options are avail-
able when running the system. For example, if "-b" is added to the

16

4.2 pos tagging 17

command line a bad spellers mode for Aspell is activated. This could
lead to higher scores but uses a lot more energy and it takes a long
time to run the system. For an overview of all the available features I
refer to the MoNoise bitbucket page from Rob van der Goot 1. For this
research, the system was ran only with one additional option, namely,
the -C option. The -C option makes the system consider capitals. By
default this setting is turned off and the data is lower cased since most
corpora do not use capitals in the gold data. However, I did consider
capitals in the gold data. As for why no other options were applied,
the goal of this research is not to maximize the normalization system
MoNoise. The goal is to improve POS tagging by normalizing non-
standard language into standard language. For this reason, I thought
it was best to keep the normalization model as simple as possible.

4.2 pos tagging
In this section the POS tagger and tagset that was used to tag the data
will be discussed. Further, an issue involving the alignment of POS
tags will be addressed.

For the task of POS tagging, various simple tools are available
publicly. Two well-known tools for NLP tasks are NLTK and SpaCy.
NLTK has been the standard tool for NLP tasks in Python for a long
time while spaCy is a newer tool which has become very popular
over the last few years. Both NLTK and spaCy provide stochastic tag-
gers. Furthermore, both taggers support multiple languages, includ-
ing Dutch. NLTK lets you customize your model if needed. SpaCy, in
contrary, implements a single algorithm which may be replaced with
an improved algorithm as the state of the art improves. This makes it
extremely easy to implement spaCy and since no customization was
needed for this research I decided to go with the spaCy tagger. Fur-
ther, it is proven that the spaCy dramatically out-performs NLTK in
POS tagging 2. SpaCy provides a Dutch model trained on the Lassy
Universal Dependencies corpus (Bouma and Van Noord, 2017). This
corpus consists of written texts (news, media). The tagset that is used
in the Dutch model is the Universal part-of-speech tagset 3. These
tags are all derived from the Universal Dependencies (UD) scheme 4.
This tagset is very basic and consists only of the most common tags.
However, this was perfect since I did not want to over-complicate the
task of POS tagging non-standard language. In the the collected Twit-

1 https://bitbucket.org/robvanderg/monoise/src/master/
2 https://blog.thedataincubator.com/2016/04/nltk-vs-spacy-natural-language-

processing-in-python/
3 https://spacy.io/api/annotation
4 https://universaldependencies.org/u/pos/index.html

4.2 pos tagging 18

ter data, quite a few tokens existed of usernames and url’s. It is easy
to detect these type of instances since usernames always start with
a "@" and url’s always start with "http". Therefore, these instances
were given the tag "USER" or "URL". This results in better POS tag-
ging scores for the tweets. However, this is the case for both the
non-normalized and the normalized data so the difference in scores
between these two datasets will be the same.

When evaluating the tagging performance on a certain test dataset,
this dataset should contain exactly the same amount of tokens as the
gold dataset, otherwise the tags can’t be compared. This is a problem
when 1-N normalization is considered in the annotated data. For
example the token kga which means "I’m going to" in Dutch should
be normalized to Ik ga. In the non-normalized data this token gets
one tag but in gold normalization data these tokens both get a tag.
However, now the tags of the tokens can not be aligned. To solve
this problem the POS annotation was manually splitted and aligned.
Thus, if a token is splitted in the gold data this should also be the case
for the non-normalized and normalized data. Since the test datasets
were relative small (100 sentences from each domain) it was easiest to
do this manually. However, if more test data is needed for a similar
experiment, manually splitting and aligning might not be the best
solution for this problem. The number of necessary alignments made
before- and after normalizing the test data per domain are shown in
the table below.

Table 9: Alignments made in test data per domain

Before normalization After normalization
Chats 101 54

SMS 102 37

Tweets 73 35

5 E VA L U AT I O N

In this chapter the results of the experiments will be evaluated. This
chapter will be divided into two parts. In the first part, the perfor-
mance of the normalization system (MoNoise) will be discussed. In
the second part, the focus is shifted towards POS tagging. In this part
the performance of the POS tagger before- and after normalizing the
test data will be evaluated.

5.1 normalization
In this section MoNoise (van der Goot and van Noord, 2017) will be
evaluated on test data sets from three different domains; Chat mes-
sages, SMS messages and Tweets. In order to compare the results to
state-of-the-art benchmarks we will use the same metrics as van der
Goot and van Noord (2017) used. In the next subsection, these met-
rics will be discussed. In the second subsection, we will take a look
at how MoNoise scored on the datasets that were collected for this
research.

5.1.1 Evaluation metrics

Since there is no clear consensus on what metric to use to measure
performance on normalization tasks, multiple metrics are being used
to evaluate MoNoise. Some normalization models use word error rate
and/or character error rate as an evaluation metric. These evaluation
metrics are based on the Levenshtein distance (Levenshtein, 1966). To
calculate the word error rate the minimum number of substitutions,
insertions and deletions to transform the word to the output word
(Levenshtein distance) is divided by the total number of words in the
annotated normalized data. The character error rate is is calculated
the same way, but with characters considered as units. According to
van der Goot (2019) these metrics only are relevant when splitting and
merging is annotated. However, van der Goot (2019) also states that
for datasets which do include annotated splitting and merging, these
metrics still are questionable since 1-N replacements are weighted
heavier whereas it’s not always clear that these specific instances are
more important.

19

5.1 normalization 20

A well know metric is the F1-score. The F1-score is the harmonic
mean between precision and recall. To understand what this score
actually means, first, some concepts which define this score will be
explained. In order to calculate the precision and recall, instances of
the test data are classified as one of the four groups below (van der
Goot, 2019).

• True Positives (TP): Annotators normalized, system normalized
correctly

• True Negatives (TN): Annotators did not normalize, system did
not normalize

• False Positives (FP): Annotators did not normalize, system nor-
malized

• False Negatives (FN): Annotators normalized, but system did
not find the correct normalization. This could be because it kept
the original word, or proposed a wrong candidate

To determine the precision, we calculate how many replacements
were made by the normalization system correctly out of all the re-
placements made.

Precision =
TP

TP+ FP

The precision is calculated differently in some previous work. When
the system normalizes a word to the wrong word, the precision score
is not punished. In some previous work (van der Goot and van No-
ord, 2017) , these cases were being considered in both the precision
(FP) and the recall (FN). However, van der Goot (2019) states that
these cases should be only be considered in the recall, otherwise the
replacement counts double, while the decision whether to normalize
the anomaly or not is actually correct.

The recall is determined by looking at how many words were cor-
rectly normalized by the normalization system out of all the words.

Recall =
TP

TP+ FN

With these two scores, it is now possible to calculate the harmonic
mean of these two metrics.

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

5.1 normalization 21

The average of the scores increase when the scores are closer to
each other. Thus, it rewards systems that score well on both preci-
sion and recall instead of scoring extremely well on one of them and
extremely poor on the other.

van der Goot (2019) also proposes a new metric in his work to
evaluate a normalization task. The Error Reduction Rate (ERR) is the
accuracy normalized for the number of tokens that need to be nor-
malized. With this metric, the difficulty of the task is being taken into
account. A downside of accuracy is that it is very hard to compare it
between multiple datasets. An accuracy of above the 90% might be
very good on one dataset while it is completely meaningless on an-
other dataset. Hence, van der Goot (2019) thought of this new metric.
Below the formula of the Error Reduction Rate is displayed.

ERR =
TP− FP

TP+ FN

Usually, the ERR is between 0.0 and 1.0. An ERR below 0.0 means
that the model normalized more words wrongly than correctly. A
score of 0.0 can be seen as a baseline score and a system that reaches
1.0 can been seen as the score of a perfect system.

All in all, the use of the Error Reduction Rate metric has multiple
advantages. It is easily comparable between multiple datasets since
ERR normalizes for the number of tokens that need to be normalized.
Also, it is easy to interpret the ERR since it shows the percentage of
how much the problem is solved. Finally, it evaluates all of the nor-
malization task since ERR includes the impact of the error detection
step. van der Goot (2019) considers the Error Reduction Rate as the
main evaluation metric for the system MoNoise. However, the ERR
does not tell us whether the system normalizes too careful or too ag-
gressively. Therefore, precision and recall are also used to evaluate
MoNoise.

5.1 normalization 22

5.1.2 Evaluation MoNoise on noisy Dutch data

In the last subsection we have seen how the normalization system
MoNoise is evaluated. In this subsection the results of how MoNoise
performed on the collected ’noisy’ data will be addressed. Remem-
ber that the data is collected from three domains; chat messages, SMS
messages and Twitter. MoNoise was evaluated on these three do-
mains. The system was tested on data from the same domain as it
was trained on. Thus, no cross-domain experiments were done for
this research. For each domain the results of the normalization will
be discussed. Further, these results will be compared to the results
we have seen from van der Goot (2019) in the chapter background.

For all three domains, the precision and recall scores were quite
similar. In all cases, the precision tops the recall. This is arguably
what we want since the system should not replace ’correct’ words
(van der Goot, 2019). Especially for the chat- and SMS messages
MoNoise performed equally well. This was to be expected since these
type of messages are very similar in contrast to for example Tweets.
Both type of messages usually contain less than 15 words per mes-
sage. The size of these corpora are also quite similar. As stated in
the chapter data and material, the chats corpus consists of 5193 words
while the SMS corpus contains 5645 words. The only difference be-
tween the results of these two domains lies in the WER (Word Error
Rate). MoNoise scored a WER of 29.72 on the chats while the system
scored a WER of 17.15 on the SMS messages. Earlier in this chap-
ter, the WER was already discussed. We saw that 1-N replacements
are weighted heavier when calculating the WER. This explains the
difference between the WER scores between these two domains. In
the SMS corpus 1-N replacements occurred in 6.3% of all the words.
However, in the chat corpus 1-N replacements occurred in 10.4% of all
the words. Besides the precision and recall, the ERR (Error Reduction
Rate) for both corpora also lie extremely close to each other. If we look
at the scores reported in the work of van der Goot (2019), we can see
that the ERR for the chats- and SMS corpora (+- 46) are very similar to
the ERR of the GhentNorm corpus (44.62). The GhentNorm corpus,
like the chats- and SMS corpora, also consists of Dutch data. Thus,
it is not rare that these scores are quite similar. However, the size of
the chats- and SMS corpora (5193 words and 5645 words respectively)
is not half the size of the GhentNorm corpus (12,901 words). So de-
spite there was a lot less training data, the system was able to reach
a higher ERR. Naturally, compared to larger English corpora like the
LexNorm corpus, the difference in ERR score was pretty big (76.15 >
+- 46).

5.1 normalization 23

Table 10: Results MoNoise on three domains

Recall Precision F1 ERR
Chats 48.81 69.71 57.42 46.44

SMS 49.62 67.36 57.14 46.80

Tweets 40.76 72.25 52.12 36.25

If we compare the Tweets to the other two domains, we can see a
decrease in ERR of 22%. First, this decrease seemed surprising. How-
ever, compared to scores on the TweetNorm corpus (Porta and Sancho,
2013) reported in the thesis from van der Goot (2019) the scores actu-
ally lie really close to each other. MoNoise scored an ERR of 35.86

on the TweetNorm corpus while it scored an ERR 36.25 on the Tweets
that were collected for this research. The TweetNorm corpus consists
of collected Spanish Tweets. Despite the difference in language the
scores were still very similar. The size of the training data probably
is not the cause for this decrease since there are far more words in
the Twitter corpus compared to the chats and SMS corpora. Also,
all three domains are annotated based on the same annotation guide-
lines. Therefore, the decrease in ERR for both these corpora could
mean that raw data collected via Twitter is more complicated to nor-
malize. Further, the WER for the tweets (12.6) is considerably low
compared to the other domains (29.72 for chats and 17.15 for SMS).
As stated earlier in this chapter, the drop in WER probably has to do
with the fact that the tweets contain way less 1-N replacements (only
in 2.3% of all the words). Thus, this decrease in WER seems logical.
To illustrate the effect of the normalization model, below three exam-
ples (one from each domain) are displayed. Sentence a is the original
sentence while sentence b is the normalized sentence.

• Chats

a) is t ni goe mss ArAgOnnn ? :p

b) Is het niet goed misschien ArAgOnnn ? :p

• SMS

a) K ga drna na tv kijke

b) Ik ga daarna naar tv kijken

• Twitter

a) Ik was vannacht te gast bij @WordtNuLaat op @NPORa-
dio2 , oa over keuzes mbt columnisten , interviews en cov-
ers

b) Ik was vannacht te gast bij @WordtNuLaat op @NPORa-
dio2 , onder andere over keuzes met betrekking tot columnis-
ten , interviews en covers

5.2 pos tagging 24

5.2 pos tagging
In this section the POS tagged normalized- and non-normalized data
is evaluated and the accuracy of the POS tags will be compared to
each other. This will be done for all three domains. Further, we will
look at some generated classification reports for all three domains to
gain some insight in what tags are being predicted correctly and what
tags are being predicted incorrectly. Finally, a comparison is drawn
between the tagged normalized data and the tagged gold data. The
results are shown in table 11 and will be discussed per domain.

Table 11: POS tagging accuracy on three datasets per domain

Non-normalized Normalized Gold Normalization
Chats 42.1 60.8 71.8
SMS 59.8 75.5 81.7
Tweets 64.3 72.5 76.1

5.2.1 Chats

The first domain that will be addressed is the chats domain. This do-
main has the smallest corpus out of the three domains. This is likely
the reason why the accuracy of the POS tags for the non-normalized
test set was only 42.1%. This is obviously a really poor score. How-
ever, the accuracy of the POS tags for the normalized test data jumped
to 60.8%. Thus, by normalizing the data, the POS tagger performed
almost 45% better. This is a big improvement. It would also be inter-
esting to see which tags are being predicted correctly and which tags
are being predicted incorrectly. Therefore, I generated a classification
report of the tagged normalized chats which is shown in table 10.

By looking at the classification report of the tagged normalized
chats, I found that that the classes DET (determiner), PRON (pro-
noun), PUNCT (punctuation) and VERB (verb) were all tagged with
fairly high precision and recall and this resulted in a F1-scores above
0.75. ADP (adposition) instances were predicted with high precision
(0.82) but low recall (0.17). In contrary, the classes ADJ (adjective),
CONJ (conjunction), NOUN (noun) and NUM (numeral) reached de-
cent recall scores (> 0.7) but poor precision (< 0.45). The tagger pre-
formed extremely poor on the X (other) instances with a precision of
0.02 and recall of 0.12. This is not strange since this tag is almost never
used. Universal Dependecies (UD) also state that "the tag X is used for
words that for some reason cannot be assigned a real part-of-speech
category. It should be used very restrictively". 1 The classes PROPN

1 https://universaldependencies.org/u/pos/X.html

5.2 pos tagging 25

Table 12: Classification report of tagged normalized chats

POS Tag Precision Recall F1 Support
ADJ 0.41 0.71 0.52 41

ADP 0.82 0.17 0.29 52

ADV 0.69 0.64 0.66 196

CONJ 0.38 0.71 0.49 34

DET 0.90 0.80 0.85 35

INTJ 0.00 0.00 0.00 54

NOUN 0.35 0.81 0.49 124

NUM 0.43 1.00 0.60 6

PRON 0.87 0.71 0.78 175

PROPN 0.00 0.00 0.00 48

PUNCT 1.00 1.00 1.00 49

SYM 0.00 0.00 0.00 42

VERB 0.89 0.73 0.80 223

X 0.02 0.12 0.04 8

(proper noun), SYM (symbol) and INTJ (interjection) were not cor-
rectly predicted once. For the class INTJ this was not a big surprise
to me since this is also a class that is very hard to define. UD explains
that "an interjection typically expresses an emotional reaction, is not
syntactically related to other accompanying expressions, and may in-
clude a combination of sounds not otherwise found in the language"
2. For example, words like "psss" or "ouch" can be classified as inter-
jections. However, I was surprised with the PROPN instances. The
test data contained some obvious proper nouns, for example "Trump"
and "Iran", but the tagger was not able to correctly tag these instances
(examples above were tagged as NOUNS).

Besides comparing the the tagging performance on the normalized
data to the non-normalized data, it is also interesting to see how the
tagger performed on the gold data and compare it to the normalized
data. The gold datasets consist of sentences from which all OOV to-
kens were manually normalized. An accuracy of 71.8% was achieved
on the gold data. This is an 18% increase compared to the normalized
data (60.8%) which tells us there is still room for improvement for the
normalization model.

2 https://universaldependencies.org/u/pos/INTJ.html

5.2 pos tagging 26

5.2.2 SMS messages

The SMS corpus is slightly larger than the chats corpus. For that rea-
son, I did not expect a big difference in scores between the chats and
SMS corpora. However, the scores did differ quite a lot. This could
be explained by the difference in words in need of normalization. In
the chats corpus, 49.6% of all the words needed normalization while
in the SMS corpus only 26.6% words were in need of normalization.
The tagger reached an accuracy of 59.8% on the non-normalized test
set. On the normalized test set the tagger achieved an accuracy score
of 75.5%. Thus, once again, the performance of the tagger improved
by more than 25%. Below the classification report of the normalized
SMS messages is shown.

Table 13: Classification report of tagged normalized SMS messages

POS Tag Precision Recall F1 Support
ADJ 0.60 0.77 0.67 48

ADP 0.81 0.28 0.41 47

ADV 0.83 0.75 0.78 253

CONJ 0.49 0.69 0.57 26

DET 0.92 0.58 0.71 19

INTJ 0.00 0.00 0.00 52

NOUN 0.47 0.78 0.58 143

NUM 0.75 1.00 0.86 9

PRON 0.88 0.89 0.89 180

PROPN 0.00 0.00 0.00 14

PUNCT 1.00 1.00 1.00 216

SYM 0.00 0.00 0.00 27

VERB 0.86 0.86 0.86 265

X 0.00 0.00 0.00 16

The classification report for the SMS messages was quite similar
to the classification report for the chats. For example, the tagger
achieved a high recall but fairly low precision on the nouns. Further,
the tagger achieved both high precision and recall on the verbs, ad-
verbs, pronouns and punctuation. Also, all instances of proper nouns,
interjections, symbols and others were predicted incorrectly. Deter-
miners were tagged with a very high precision (0.92), however, the
recall was fairly low (0.58). As with the adpositions in the chats, the
adpositions in the SMS messages achieved a high precision (0.81) but
very low recall (0.28).

5.2 pos tagging 27

Further, the tagger was also tested on the gold normalization data.
This data was tagged with an accuracy of 81.7%. In comparison to
the normalized data (75.5%), the accuracy improved by 8.2%. This im-
provement, compared to the chats domain, is relatively small which
tells us that the normalization model performed significantly better
on the SMS domain.

5.2.3 Tweets

As shown in the chapter 3, this corpus consists of more than twice
as many words as the chats and SMS corpora. Further, this corpus
also holds the lowest percentage of words in need of normalization
(21.5%). For those reasons, I expected highest the accuracy scores
for the tweets out of the three domains. This prediction was some-
what correct, since an accuracy of 64.3% was reached on the non-
normalized test but only an accuracy of 72.5% was achieved on the
normalized test set. It makes sense that the difference in scores be-
tween the non-normalized normalized test sets is smaller for the
tweets since only 21.5% of the words in the corpus were in need of
normalization while those numbers were higher for the other two do-
mains. The classification report for the normalized tweets is shown
below.

Table 14: Classification report of tagged normalized chats

POS Tag Precision Recall F1 Support
ADJ 0.62 0.71 0.66 201

ADP 0.91 0.19 0.31 341

ADV 0.51 0.76 0.61 388

CONJ 0.77 0.82 0.79 184

DET 0.99 0.74 0.85 192

INTJ 0.00 0.00 0.00 34

NOUN 0.59 0.86 0.70 599

NUM 0.78 0.85 0.81 53

PRON 0.81 0.91 0.86 454

PROPN 0.00 0.00 0.00 140

PUNCT 0.98 0.98 0.98 362

SYM 0.00 0.00 0.00 27

VERB 0.86 0.79 0.82 541

X 0.03 0.02 0.03 42

5.3 discussion 28

Some trends regarding the precision and recall scores per class
that were found in the chats and SMS messages were also found in
the tweets. Verbs, pronouns and punctuation achieved high scores for
both precision and recall. Determiners reached a nearly perfect pre-
cision (0.99) but slightly lower recall (0.74). Adpositions were tagged
with high precision (0.91) but very poor recall (0.19). Further, the
classes on whose the tagger performed extremely poorly once again
included interjections, proper nouns, symbols and others.

Finally, the tagger was also tested on the gold normalization data
from the twitter corpus. The tagger reached an accuracy of 76.1,
which is an increase of 5% compared to the normalized data (72.5).
This is the smallest improvement out of the three domains. The data
normalized by the model was POS tagged almost as well as the data
that was normalized manually.

5.3 discussion
In this section the results will be discussed briefly.

The first part of the experiment consisted of the normalization task.
The evaluation on this task showed us that MoNoise reached scores
for the normalization of the collected data similar to scores that were
reported in earlier work on MoNoise. This shows us that MoNoise is
capable of handling data that contain a lot of non-standard language.
The second part of the experiment consisted of the POS tagging of the
non-normalized data and the normalized data for all domains. The
data was tagged using the spaCy tagger which uses the Universal
Dependencies POS tagset. For all three domains, we saw that the tag-
ging scores improved after the data was normalized using MoNoise.
The chats domain yielded the biggest improvement, the accuracy in-
creased by 44.4%. A slightly smaller improvement was found when
evaluating the tagger on the SMS messages, the accuracy increased
by 26.3%. The twitter corpus yielded the smallest improvement out
of the three domains, the accuracy increased by 12.8%. By gener-
ating classification reports some insight was gained on what tags
were being predicted correctly and what tags were being predicted
incorrectly after the data was normalized. Some trends were found
within the three domains. In general, the tagger performed well on
the verbs, determiners, pronouns and punctuation. In contrary, the
tagger performed poorly on the proper nouns, symbols, interjections
and others. Further, I found that adpositions were tagged with high
precision but low recall while the nouns were tagged with high recall
but fairly poor accuracy. Furthermore, a comparison was drawn be-
tween how the tagger performed on the normalized data and how it
performed on the gold normalization data. The difference in scores

5.3 discussion 29

turned out smaller than I expected, especially for the SMS messages
and the tweets. The spaCy tagger should be able to tag Dutch data
with an accuracy around the 90%. The scores we have seen in this
thesis are significantly lower than this benchmark. However, the POS
tagger did not achieve much better on the manually annotated gold
normalization data. This means that the difference in performance be-
tween the spaCy benchmark for Dutch data (90%) and the normalized
data is not due to poor performance from the normalization system
but due to the collected data which makes sense since only sentences
were collected which contained at least four OOV tokens.

6 C O N C L U S I O N

In this chapter the answer on whether we can improve POS tagging
by normalizing Dutch user generated content will be given.

A state-of-the-art normalization system named MoNoise was used
to normalize user generated content collected from three different do-
mains: chats, SMS messages and twitter. Only messages with a high
volume of OOV words were collected from these three domains. Sub-
sequently, the collected test data was POS tagged before- and after
normalization. The difference between these two tagging scores can
be seen as the impact of normalization on POS tagging user generated
content.

All in all, I can conclude that by normalizing Dutch user generated
content it is definitely possible to improve the POS tagging of Dutch
user generated content, especially when the data consists of a lot of
non-standard language (OOV tokens).

Despite the normalization, the tagger still had a lot of trouble tag-
ging proper nouns and interjections correctly. Although words like
psss, ouch and hello may be hard to define, they appear often in user
generated content. Improving the tagging accuracy of these POS tags
might be an interesting subject for future work.

30

A A N N OTAT I O N G U I D E L I N E S

In dit bestand zal ik wat guidelines specificeren voor het normalis-
eren van Nederlandse Tweets, Chats & SMS berichten. OOV woorden
kunnen op de volgende manieren worden genormaliseerd:

• One-to-One normalisatie: 1 woord wordt vervangen door 1 wo-
ord

• One-to-Many normalisatie: 1 woord wordt vervangen door N
woorden

• Many-to-One normalisatie: N woorden worden vervangen door
1 woord

Nu zal ik wat richtlijnen opstellen die aangehouden moeten wor-
den bij het annoteren van de data.

• Hoofdletters worden meegenomen.

• Niet Nederlandse woorden worden volledig genegeerd (behalve
vlaams), zelfs woorden die ook vaak in Nederlandse tweets voorkomen
(bijv. “Thanks”).

• Woorden met een “#” ervoor worden genegeerd.

• Woorden uit een Nederlands dialect worden naar de correcte
standaard Nederlandse vorm geannoteerd tenzij de betekenis
van het woord onbekend is.

• Woorden waarbij de nadruk op het desbetreffende woord wordt
gelegd d.m.v. het gebruik van een trema worden naar de nor-
male Nederlandse vorm gezet (bijv. héél > heel)

• Vormen van begroeting die niet behoren tot de standaard Neder-
landse taal worden genormaliseerd naar “Hoi” (bijv. Hey/Haai/heej).

• Getallen met “de” of “ste” erachter worden naar bijv. “tweede”
of “achtste” genormaliseerd.

• Afkortingen worden genormaliseerd naar de volledige betekenis-
sen (bijv. “ipv” > “in plaats van”).

31

annotation guidelines 32

• Het teken “=” wordt genormaliseerd naar “is”.

• Woorden als “zoooooo” en “Gooeddd” worden naar “Zo” en
“Goed” genormaliseerd.

• Twee woorden waar een “-” tussen zit worden genormaliseerd
naar twee losse woorden.

• Verkleinwoorden worden in sommige gevallen genormaliseerd
naar de normale vorm. Dit hangt ervan af of het desbetreffende
woord in het Nederlands vaak in verkleinde vorm wordt ge-
bruikt (bijv. “kusje” wordt niet genormaliseerd naar “kus”, maar
“buschauffeurtje” wordt wel genormaliseerd naar “buschauffeur”).

• Het Vlaamse woord “ne” wordt altijd genormaliseerd naar “een”.

• Woorden die direct achter elkaar worden herhaald worden terug
gezet naar de eenmalige vorm (bijv. “snelsnel” > “snel”).

• Woorden als “ok”, “okay”, “Oowke” worden genormaliseerd
naar “Oké”.

Als het niet duidelijk is wat het OOV woord betekent en/of wat
de genormaliseerde vorm zou moeten zijn, negeer dan het woord en
verander niks!

B I B L I O G R A P H Y

Baldwin, T., M.-C. de Marneffe, B. Han, Y.-B. Kim, A. Ritter,
and W. Xu (2015a). Guidelines for english lexical normali-
sation. https://github.com/noisy-text/noisy-text.github.io/

blob/master/2015/files/annotation_guideline_v1.1.pdf.

Baldwin, T., M.-C. de Marneffe, B. Han, Y.-B. Kim, A. Ritter, and W. Xu
(2015b). Shared tasks of the 2015 workshop on noisy user-generated
text: Twitter lexical normalization and named entity recognition. In
Proceedings of the Workshop on Noisy User-generated Text, pp. 126–135.

Bouma, G. and G. Van Noord (2017). Increasing return on annotation
investment: the automatic construction of a universal dependency
treebank for dutch. In Proceedings of the nodalida 2017 workshop on
universal dependencies (udw 2017), pp. 19–26.

Breiman, L. (2001). Random forests. Machine learning 45(1), 5–32.

Choudhury, M., R. Saraf, V. Jain, A. Mukherjee, S. Sarkar, and A. Basu
(2007). Investigation and modeling of the structure of texting lan-
guage. International Journal of Document Analysis and Recognition (IJ-
DAR) 10(3-4), 157–174.

De Clercq, O., B. Desmet, and V. Hoste (2014). Guidelines for normal-
izing dutch and english user generated content. Technical report,
Technical report, Ghent University.

De Clercq, O., S. Schulz, B. Desmet, and V. Hoste (2014). Towards
shared datasets for normalization research. In Language Resources
and Evaluation Conference, pp. 1218–1223. European Language Re-
sources Association (ELRA).

Derczynski, L., A. Ritter, S. Clark, and K. Bontcheva (2013). Twitter
part-of-speech tagging for all: Overcoming sparse and noisy data.
In Proceedings of the International Conference Recent Advances in Natu-
ral Language Processing RANLP 2013, pp. 198–206.

Eisenstein, J. (2013). What to do about bad language on the internet.
In Proceedings of the 2013 conference of the North American Chapter of
the association for computational linguistics: Human language technolo-
gies, pp. 359–369.

Erik and A. van den Bosch (2013). Dealing with big data: The case
of twitter. Computational Linguistics in the Netherlands Journal 3, 121–
134.

33

https://github.com/noisy-text/noisy-text.github.io/blob/master/2015/files/annotation_guideline_v1.1.pdf
https://github.com/noisy-text/noisy-text.github.io/blob/master/2015/files/annotation_guideline_v1.1.pdf

BIBLIOGRAPHY 34

Gimpel, K., N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisen-
stein, M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith (2010).
Part-of-speech tagging for twitter: Annotation, features, and ex-
periments. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
School of Computer Science.

Han, B. and T. Baldwin (2011). Lexical normalisation of short text mes-
sages: Makn sens a# twitter. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pp. 368–378. Association for Computational
Linguistics.

Hupkes, D. and R. Bod (2016). Pos-tagging of historical dutch. In
Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC’16), pp. 77–82.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Volume 10, pp.
707–710.

Li, C. and Y. Liu (2015). Joint pos tagging and text normalization
for informal text. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Maarten van Gompel, Ko van der Sloot, I. H. A. v. d. B. (2018). Ucto:
Unicode tokeniser. reference guide, language and speech technol-
ogy technical report series 18-01. Radboud University, Nijmegen.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient es-
timation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

Oostdijk, N., M. Reynaert, V. Hoste, and H. van den Heuvel
(2013). Sonar user documentation. Online:< https://ticclops. uvt.
nl/SoNaR_end-user_documentation_v 1(4).

Plank, B. (2016). What to do about non-standard (or non-canonical)
language in nlp. arXiv preprint arXiv:1608.07836.

Porta, J. and J.-L. Sancho (2013). Word normalization in twitter using
finite-state transducers. Tweet-Norm@ SEPLN 1086, 49–53.

Toutanova, K., D. Klein, C. D. Manning, and Y. Singer (2003). Feature-
rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pp. 173–180. Association for computational
Linguistics.

BIBLIOGRAPHY 35

van der Goot, R. and G. van Noord (2017). Monoise: Model-
ing noise using a modular normalization system. arXiv preprint
arXiv:1710.03476.

van der Goot, R. M. (2019). Normalization and Parsing Algorithms for
Uncertain Input. Ph. D. thesis, University of Groningen.

Yang, Y. and J. Eisenstein (2013). A log-linear model for unsupervised
text normalization. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 61–72.

	Abstract
	Preface
	1 Introduction
	2 Background
	2.1 POS Tagging
	2.2 Normalization
	Candidate generation
	Candidate ranking

	3 Data and Material
	3.1 Collection
	3.1.1 SoNar New Media Corpus
	SMS Messages
	Chats
	Tweets

	3.1.2 RUG Tweets

	3.2 Annotation
	3.2.1 Guidelines
	3.2.2 Inter annotator agreement scores

	4 Method
	4.1 Normalization
	4.2 POS Tagging

	5 Evaluation
	5.1 Normalization
	5.1.1 Evaluation metrics
	5.1.2 Evaluation MoNoise on noisy Dutch data

	5.2 POS Tagging
	5.2.1 Chats
	5.2.2 SMS messages
	5.2.3 Tweets

	5.3 Discussion

	6 Conclusion
	A Annotation Guidelines

