Sem-mmmBERT: Multi-task Learning with a Pre-defined set of Tasks and no Tuning

Rob van der Goot

October 27, 2023

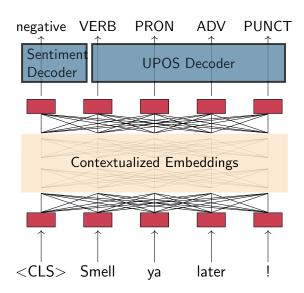
"Recently, there has been a flurry of papers that show not only that multi-task learning helps pre-trained models, but that gains are larger when more tasks are used. Such massive multi-task learning settings cover up to around 100 tasks, going beyond earlier work that covered around 50 tasks (Aghajanyan et al., 2021)."

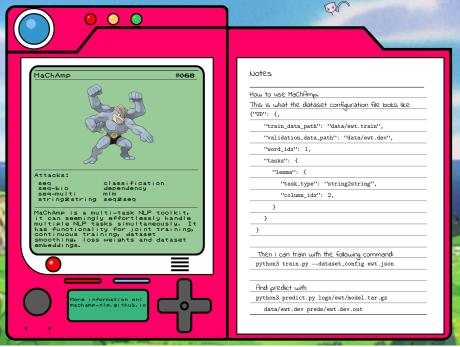
"Recently, there has been a flurry of papers that show not only that multi-task learning helps pre-trained models, but that gains are larger when more tasks are used. Such massive multi-task learning settings cover up to around 100 tasks, going beyond earlier work that covered around 50 tasks (Aghajanyan et al., 2021)."

https://newsletter.ruder.io/issues/ pre-training-massive-multi-tasking-709680/ 05e59718-2554-4a0c-84d2-4e1572a020a2

"The newly proposed approaches differ in terms of how and when multi-task learning is applied. One choice is fine-tuning an existing pre-trained model on a collection of multiple tasks, i.e. behavioural fine-tuning. This is done by T0 (Sanh et al., 2021), one of the first outcomes of the BigScience workshop, using T5 and FLAN (Wei et al., 2021) using a GPT-3-like pre-trained model."

multi-task models may soon hold state-of-the-art results on many benchmarks.


➤ Can we exploit a pre-selected combination of NLP tasks in a multi-task setup to improve the ability of an autoencoder language model to learn NLP tasks?


MaChAmp at SemEval-2022 tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets

> Rob van der Goot IT University of Copenhagen robv@itu.dk

Also: a multi-task learning toolkit for NLP!

"multi-task learning is much easier with recent models, even across many tasks. This is due to the fact that many recent models such as T5 and GPT-3 use a text-to-text format."

"multi-task learning is much easier with recent models, even across many tasks. This is due to the fact that many recent models such as T5 and GPT-3 use a text-to-text format."

Let's do this in a non-easy way!

MULTITASK PROMPTED TRAINING ENABLES ZERO-SHOT TASK GENERALIZATION

Victor Sanh*	Albert Webson*		Colin Raffel*		Stephen H. Bach*
Hugging Face	Brown University		Hugging Face		Brown University
Lintang Sutawik	za Zaid Alya		Chaffin	Arnaud Stiegle	Teven Le Scao
BigScience	KFUPM		IMATAG	Hyperscience	Hugging Face
Arun Raja	Manan Dey	M Saiful Bari	Canwen	Xu	Urmish Thakker
I ² R, Singapore	SAP	NTU, Singapore	UCSD &	z Hugging Face	SambaNova Systems
Shanya Sharma	Eliza Szczec	chla Taewoon		unjan Chhablani	Nihal V. Nayak
Walmart Labs	BigScience	VU Amste		igScience	Brown University
Debajyoti Datta University of Virg			Tian-Jian J LS, Japan	liang Han Wan	Matteo Manica IBM Research
Sheng Shen UC Berkeley	Zheng-Xin You Brown Universit	-		Michael McKenna Parity	Rachel Bawden Inria, France
Thomas Wang	Trishala Neer	aj Jos Rozen		bheesht Sharma	Andrea Santilli
Inria, France	BigScience	Naver Labs I		ITS Pilani, India	University of Rome
Thibault Fevry	Jason Alan Fries		Ryan Teehan		Tali Bers
BigScience	Stanford University		Charles River Analytics		Brown University
Stella Biderman EleutherAI & Bo		Leo Gao EleutherAI	Thomas ! Hugging !		cander M. Rush ging Face

MaChAmp at SemEval-2022 tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets

> Rob van der Goot IT University of Copenhagen robv@itu.dk

- ▶ Note that (almost) no tuning is done!
 - Is this a bad thing?

SemEval Task	Included sub-tasks	Languages	Citation
2: Multilingual Id- iomaticity Detection	Idiomaticity detection (1-shot)	EN, PT, GL	[tayyarmadabushi-etal-2022 tayyar-madabushi-etal-2021
3: PreTENS	 Binary acceptability Regression acceptability 	EN, IT, FR EN, IT, FR	[taskpaper]
4: Patronizing and Condescending	 Binary PCL detection Multi-label PCL classifica- 	EN EN	[perezalmendros2022semev perezalmendros2020dont]
Language Detection	tion		
6: iSarcasmEval	Sarcasm detection Irony-labeling Paraphrase sarcasm detec-	EN, AR EN EN, AR	[abufarha-etal-2022-semeva
	tion	LIV, 7113	
10: Structured Senti- ment Analysis	Expressions, entities and relations	CA, EN, ES, EU, NO	[barnes-etal-2022-semeval]
11: MultiCoNER - Multilingual Complex Named	Named Entity Recognition	BN, DE, EN, ES, FA, HI, KO, MI,	[multiconer-report]
Entity Recognition		NL, RU, TR, ZH	
12: Symlink	Entities and relations	EN	[task12]

Task	MaChAmp task-type	#words	#sents	#sents smoothed
2-a1	classification	10,199	139	2,742
3-1	classification	99,044	11,669	25,131
3-2	regression	4,761	785	6,518
4-1	classification	399,376	8,369	21,283
4-2	classification	135,750	2,202	10,917
6-a	classification	83,266	5,254	16,863
6-b	classification*6	12,183	691	6,115
6-c	classification	29,242	1,287	8,346
10	seq seq seq	1,109,260	58,799	56,413
11	seq_bio	2,768,898	171,300	96,288
12	seq seq	944,176	3,120	12,994

Table: The task-types used within MaChAmp for each of the (sub-)tasks, and the data size before and after smoothing.

Task	MaChAmp task-type	#words	#sents	#sents smoothed
2-a1	classification	10,199	139	2,742
3-1	classification	99,044	11,669	25,131
3-2	regression	4,761	785	6,518
4-1	classification	399,376	8,369	21,283
4-2	classification	135,750	2,202	10,917
6-a	classification	83,266	5,254	16,863
6-b	classification*6	12,183	691	6,115
6-c	classification	29,242	1,287	8,346
10	seq seq seq	1,109,260	58,799	56,413
11	seq_bio	2,768,898	171,300	96,288
12	seq seq	944,176	3,120	12,994

Table: The task-types used within MaChAmp for each of the (sub-)tasks, and the data size before and after smoothing.

2a: Multilingual Idiomaticity Detection

[CLS] bad hat [SEP] The disapproval is literally of the hats. [SEP] The moral character of a bad hat is secondary. [SEP] Shocking, used as a quasi-adverb like this, was thought a vulgarism [SEP]

2a: Multilingual Idiomaticity Detection

[CLS] bad hat [SEP] The disapproval is literally of the hats. [SEP] The moral character of a bad hat is secondary. [SEP] Shocking, used as a quasi-adverb like this, was thought a vulgarism [SEP]

2a: Multilingual Idiomaticity Detection

```
{
    "SEMEVAL2-A1": {
        "train_data_path": "data/task2/train.all.conll",
        "validation_data_path": "data/task2/dev.all.conll"
        "sent_idxs": [2,3,4,5],
        "tasks": {
            "idiomaticy-1": {
                "column_idx": 6,
                "task_type": "classification",
                "metric": "macro-f1"
```

3-2: PreTENS: acceptability regression

- ► Regression not supported!
- Added now!
- linear layer and mean square error loss

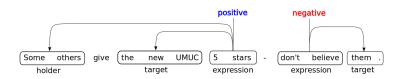
3-2: PreTENS: acceptability regression

```
"SEMEVAL3-2": {
    "train_data_path": "data/task3/2.train.all.conll",
    "validation_data_path": "data/task3/2.dev.all.conl2
    "sent_idxs": [1],
    "tasks": {
        "sts": {
            "task_type": "regression",
            "column_idx": 2,
            "metric": "spearman"
```

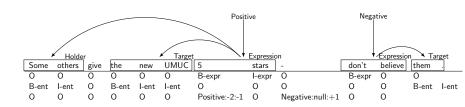
6-2: iSarcasmEval: Irony labeling

- ► Classification task, but multi-label
- ► Each label as separate task

6-2: iSarcasmEval: Irony labeling

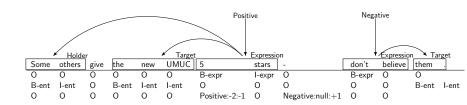

```
{
    "SEMEVAL6-b": {
        "train_data_path": "data/task6/2.train.en.conll",
        "validation_data_path": "data/task6/2.dev.en.conll"
        "sent_idxs": [1],
        "tasks": {
            "sarcasm": {
                 "task_type": "classification",
                 "column_idx": 4,
                 "metric": "macro-f1"
            },
            "irony": {
                 "task_type": "classification",
                 "column_idx": 5,
                "metric": "macro-f1"
            },
            "satire": {
                 "task_type": "classification",
```

22 / 1


6-2: iSarcasmEval: Irony labeling

```
"column_idx": 6,
    "metric": "macro-f1"
"understatement": {
    "task_type": "classification",
    "column_idx": 7,
    "metric": "macro-f1"
},
"overstatement": {
    "task_type": "classification",
    "column_idx": 8,
    "metric": "macro-f1"
},
"rhetorical_question": {
    "task_type": "classification",
    "column_idx": 9,
    "metric": "macro-f1"
```

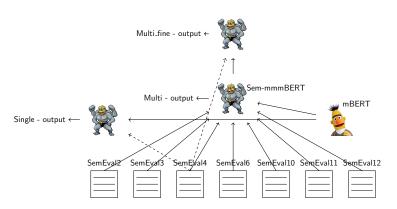
10: Structured Sentiment Analysis



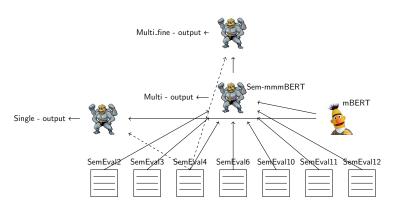
10: Structured Sentiment Analysis

► Inspired by Biomedical Event Extraction as Sequence Labeling (Ramponi et al, 2020)

10: Structured Sentiment Analysis

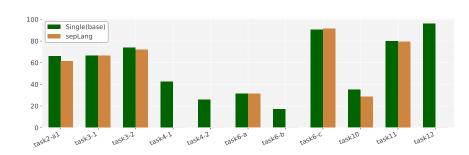

- ► Inspired by Biomedical Event Extraction as Sequence Labeling (Ramponi et al, 2020)
- ▶ Note that items can be overlapping, and are BIO-encoded
- However, the seq task-type outperformed seq_bio and multiseq.

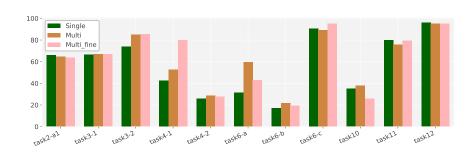
12: Symlink


- ▶ Similar as task 10, but linking mathematical symbols
- And non-tokenized input!
- Used _is_punctuation from huggingface, and save location of split
- ▶ Rest of procedure remains the same

12: Symlink

```
"SEMEVAL12": {
    "train_data_path": "data/task12/train.all.conll",
    "validation_data_path": "data/task12/dev.all.conll"
    "word_idx": 1,
    "tasks": {
        "entities12": {
            "task_type": "seq",
            "column_idx": 2
        },
        "relations12": {
            "task_type": "seq",
            "column_idx": 3
```





STILT: Supplementary Training on Intermediate Labeled-data Tasks (Phang et al. 2018)

```
train.py --dataset_config config/task4.json
train.py --dataset_config config/*.json --name multi
train.py --finetune logs/multi/*/model.tar.gz \
    --dataset_config config/task4.json --name multi.task4
```


Task	Single mBERT	Multi_fine RemBERT	Ranking
task2-a1	_	66.07	NA
task3-1	78.78	86.42	11/21
task3-2	0.6792	-0.164	17/17 (3/17)
task4-1	0.4172	0.4211	56/78
task4-2	0.0772	0.1546	34/49
task6-a	0.3639	0.3187	31/43 & 12/32
task6-b	0.0919	0.0851	3/22
task6-c	0.2400	0.2250	16/16 & 13/13
task10	0.472	0.501	13/22
task11	0.6027	0.6768	18/26
task12	2.67	7.42	_

We will release:

- Sem-mmmBERT: Semeval-Machamp-Multitask-Multilingual BERT
- Sem-RemmmBERT: Semeval-Machamp-Multitask-Multilingual RemBERT

multi-task models may soon hold state-of-the-art results on many benchmarks.

Can we do better?

multi-task models may soon hold state-of-the-art results on many benchmarks.

- ► Can we do better?
 - Use other LM's
 - ► Finetune hyperparameters
 - Add/select pre-training tasks

```
All code available at: https://bitbucket.org/robvanderg/semeval2022 paper is on the way
```

MaChAmp: https://machamp-nlp.github.io/