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* Linearization of event structures as word-level tagging
= Joint modeling of triggers and arguments via multi-task learning
* Handling of multiple labels per token via multi-label decoding



Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token
» h (head): event type and position the token is argument



Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token
» h (head): event type and position the token is argument

Theme Cause

PROTEIN +REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL-12 induced STAT-4 activation showed to promote production of IL-10




Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token
» h (head): event type and position the token is argument

Theme Cause

PROTEIN I-REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL{12 indijced STAT-4 activation showed to promote production of IL-10
d: Protein
T Cause —
h:  +Regi




Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token
» h (head): event type and position the token is argument

Theme Cause

PROTEIN +REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL-12 induced STAT-4 activation showed to promote production of IL-10

d: Protein  +Regulation
T Cause
h:  +Regi



Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token

» h (head): event type and position the token is argument

Theme Cause

PROTEIN +REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL-12 induced STAT-4 activation showed to promote production of IL-10

d: Protein =~ +Regulation  Protein
T Cause Theme
h:  +Regi +Reg



Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token

» h (head): event type and position the token is argument

Theme Cause

PROTEIN +REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL-12 induced STAT-4 activation showed to promote production of IL-10
d: Protein  +Regulation  Protein +Regulation
T Cause Theme | Theme, Cause
h:  +Regi +Reg,; [+Reg_1, +Reg;
multi-label!



Linearization of event structures

Each token x; has a structured label y; = (d, r, h), where:
» d (dependent): mention type of the token

» 1 (relation): argument role type of the token

» h (head): event type and position the token is argument

Theme Cause

PROTEIN +REGULATION PROTEIN +REGULATION +REGULATION EXPRESSION PROTEIN
IL-12 induced STAT-4 activation showed to promote production of IL-10
d: Protein  +Regulation  Protein +Regulation +Regulation Expression Protein
T Cause Theme | Theme, Cause Theme Theme
h:  +Regi +Reg,; [+Reg_1, +Reg; +Reg_1 Exp_1
multi-label!



The model and learning strategies

Shared BERT encoder, private decoder(s)

Single task (ST) y; = {d, 7, h)
" yi — (dr r, h) ________________________________________________

/ \/ \ E{ decoder i
) - )

dependent relation head




The model and learning strategies

Shared BERT encoder, private decoder(s)

Single task (ST)
“Vi = (dr T, h)

Multi-task (MT)
"y =(d),(r,h)




The model and learning strategies

Shared BERT encoder, private decoder(s)

Single task (ST)
“Vi = (dr T, h)

Multi-task (MT)

"y =(d),(r, h)
"y:=(d,7),(h)




The model and learning strategies

Shared BERT encoder, private decoder(s)

Single task (ST)
“Vi = (dr T, h)

Multi-task (MT)
"y =A(d),(r, h)
"y ={d,r),(h)
“"Yi= (d, h), (1")




The model and learning strategies

Shared BERT encoder, private decoder(s)

Single task (ST)
" yi — (d' r, h)
Multi-task (MT)
"y; = (d),(r, h)
"y; =(d,r),{(h)
" yi — (d, h), (T)
"y; = (d),(r),(h)




Single- and multi-label decoding

After encoding, each token x; is given: ®
Single-label - N
decoder [ Softmax | !

P e

Single-label decoder: the highest scoring label [; m
= Suitable for predicting dependentd T .

[ BERT encoder ]




Single- and multi-label decoding

After encoding, each token x; is given: ®

Single-label [
decoder :[ Softmax

Single-label decoder: the highest scoring label [; m
= Suitable for predicting dependentd T .

[ BERT encoder ]

Multi-label decoder: all labels [; with probability P(l;) > 7
= Suitable for predicting relation r and head h @ @
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Experiments and evaluation

Genia11 benchmark
= | argest biomedical event extraction dataset
= Both abstract and full-text documents
= Simple and complex events (37.2% nested)

Model selection
= Single-task vs multi-task strategies
= Addition of multi-label decoding

Evaluation
= Accuracy and speed comparison
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Model selection

F, score
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Multi-label decoding
improves both setups

Multi-task (d), (r, h) paired
with multi-label decoding
is the overall best setup




The final model
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Comparison to the state-of-the-art

Work Method P R F1
Riedel et al. (2011) FAUST - Model combination (joint+parsing) 64.75 49.41 56.04
Miwa et al. (2012) EventMine — SVM pipeline (+coref) 6348 53.35 57.98
Venugopal et al. (2014) BioMLN - SVM pipeline & MLN (joint) 63.61 53.42 58.07
Majumder et al. (2016) Stacked generalization 6646 48.96 56.38
Bjorne and Salakoski (2018)  TEES — CNN pipeline (single model) 64.86 50.53 56.80
Bjorne and Salakoski (2018)  TEES — CNN pipeline (5x ensemble) 68.76 49.97 57.87
Bjorne and Salakoski (2018)  TEES — CNN pipeline (mixed 5x ensemble) 69.45 49.94 58.10
Liet al. (2019) BiLSTM pipeline 62.18 48.44 54.46
Liet al. (2019) Tree-LSTM pipeline 64.56 50.28 56.53
Li et al. (2019) KB-driven Tree-LSTM pipeline 67.01 52.14 58.65

BEESL Multi-task neural sequence labeling 69.72 53.00 60.22
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sents/min

TEES (single) 25541
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BEESL 499, 5

*on a consumer grade CPU
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Multi-label decoding is stable
= Values of the threshold 7 in [0.3,0.7] only minimally alter results

Analysis of the errors
* Mainly due to ambiguous or generic words acting as event triggers

Impact of non-gold entity mentions
= Empirical results show the robustness to noisy, predicted entities
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» Accurate and efficient solution
» SOTA results on standard GENIA 11 benchmark (+1.57% F,)
» High speed efficiency (5x sents/min)
= Viable solution for large-scale real-world scenarios

» Linearization approach useful for other NLP tasks
" e.g., enhanced dep. parsing, fine-grained NER, semantic parsing
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