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Motivation
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Motivation

SOTA systems work as locally-optimized classifier pipelines
§ e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

Classifier1 (triggers)
Classifier2 (arguments)

Biomedical Event Extraction as Sequence Labeling ( )
§ Linearization of event structures as word-level tagging
§ Joint modeling of triggers and arguments via multi-task learning
§ Handling of multiple labels per token via multi-label decoding
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▶ 𝒉 (head): event type and position the token is argument
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5

After encoding, each token 𝑥𝑖 is given:

Single-label decoder: the highest scoring label 𝑙𝑗
§ Suitable for predicting dependent 𝑑

Multi-label decoder: all labels 𝑙𝑗 with probability 𝑃 𝑙𝑗 > 𝜏
§ Suitable for predicting relation 𝑟 and head ℎ

BERT encoder

BERT encoder

Multi-label
decoder

Single-label
decoder
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Genia11 benchmark
§ Largest biomedical event extraction dataset
§ Both abstract and full-text documents
§ Simple and complex events (37.2% nested)

Model selection
§ Single-task vs multi-task strategies
§ Addition of multi-label decoding

Evaluation
§ Accuracy and speed comparison
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The final model
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§ +1.57% compared to two independent classifiers ⟨𝑑⟩ → ⟨𝑟, ℎ⟩

Multi-label decoding is stable
§ Values of the threshold 𝜏 in [0.3,0.7] only minimally alter results

Analysis of the errors
§ Mainly due to ambiguous or generic words acting as event triggers

Impact of non-gold entity mentions
§ Empirical results show the robustness to noisy, predicted entities
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▶Accurate and efficient solution
§ SOTA results on standard GENIA 11 benchmark (+1.57% F1)
§ High speed efficiency (5x sents/min)
§ Viable solution for large-scale real-world scenarios

▶Linearization approach useful for other NLP tasks
§ e.g., enhanced dep. parsing, fine-grained NER, semantic parsing
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