

IT UNIVERSITY OF COPENHAGEN

Biomedical event extraction as sequence labeling

A. Ramponi,^{1,2} R. van der Goot,³ R. Lombardo,² B. Plank³ EMNLP 2020

¹ Department of Information Engineering and Computer Science, University of Trento
 ² Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology
 ³ Department of Computer Science, IT University of Copenhagen

Bio-event: biomedical "happening" involving bio-entities

entities:PROTEINtext:STAT-4activation

promotes

production of IL-10

1

PROTEIN

- Triggers: center of events, with a semantic type
 - e.g., "production" triggers an Expression event

- Triggers: center of events, with a semantic type
 - e.g., "production" triggers an Expression event
- Arguments: participants of events, with a semantic type
 - e.g., "IL-10" is a <u>Theme</u> of the Expression event

- Triggers: center of events, with a semantic type
 - e.g., "production" triggers an Expression event
- Arguments: participants of events, with a semantic type
 - e.g., "IL-10" is a <u>Theme</u> of the Expression event

- Triggers: center of events, with a semantic type
 - e.g., "production" triggers an Expression event
- Arguments: participants of events, with a semantic type
 - e.g., "IL-10" is a <u>Theme</u> of the Expression event

- Triggers: center of events, with a semantic type
 - e.g., "production" triggers an Expression event
- Arguments: participants of events, with a semantic type
 - e.g., "IL-10" is a <u>Theme</u> of the Expression event

SOTA systems work as locally-optimized classifier pipelines • e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

SOTA systems work as locally-optimized classifier pipelines • e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

SOTA systems work as locally-optimized classifier pipelines • e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

Biomedical Event Extraction as Sequence Labeling (
Linearization of event structures as word-level tagging

SOTA systems work as locally-optimized classifier pipelines • e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

Biomedical Event Extraction as Sequence Labeling (

- Linearization of event structures as word-level tagging
- Joint modeling of triggers and arguments via multi-task learning

SOTA systems work as locally-optimized classifier pipelines • e.g., CNN (Bjorne and Salakoski, 2018), KB TreeLSTM (Li et al., 2019)

Biomedical Event Extraction as Sequence Labeling (

- Linearization of event structures as word-level tagging
- Joint modeling of triggers and arguments via multi-task learning
- Handling of multiple labels per token via multi-label decoding

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ► *h* (*head*): event type and position the token is argument

- ► *d* (*dependent*): mention type of the token
- ▶ *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

- d:
- r:h:
- п.

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

- *d*: Protein +Regulation
- r: Cause
- $h: + \operatorname{Reg}_{+1}$

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

- ► *d* (*dependent*): mention type of the token
- ► *r* (*relation*): argument role type of the token
- ▶ *h* (*head*): event type and position the token is argument

Shared BERT encoder, private decoder(s)

Shared BERT encoder, private decoder(s)

Single task (ST) • $y_i = \langle d, r, h \rangle$

Multi-task (MT) • $y_i = \langle d \rangle, \langle r, h \rangle$

Shared BERT encoder, private decoder(s)

Single task (ST) • $y_i = \langle d, r, h \rangle$

Multi-task (MT) • $y_i = \langle d \rangle, \langle r, h \rangle$ • $y_i = \langle d, r \rangle, \langle h \rangle$

Shared BERT encoder, private decoder(s)

Single task (ST) • $y_i = \langle d, r, h \rangle$

Multi-task (MT) • $y_i = \langle d \rangle, \langle r, h \rangle$ • $y_i = \langle d, r \rangle, \langle h \rangle$ • $y_i = \langle d, h \rangle, \langle r \rangle$

Shared BERT encoder, private decoder(s)

Single task (ST) • $y_i = \langle d, r, h \rangle$ Multi-task (MT) • $y_i = \langle d, r \rangle, \langle h \rangle$ • $y_i = \langle d, h \rangle, \langle r \rangle$ • $y_i = \langle d, h \rangle, \langle r \rangle$ • $y_i = \langle d, h \rangle, \langle r \rangle$ • $y_i = \langle d \rangle, \langle r, h \rangle$ • $y_i = \langle d, h \rangle, \langle r \rangle$ • $y_i = \langle d \rangle, \langle r \rangle, \langle h \rangle$

 x_i

Single- and multi-label decoding

After encoding, each token x_i is given:

Single-label decoder: the highest scoring label l_i

Suitable for predicting dependent d

Single- and multi-label decoding

After encoding, each token x_i is given:

Single-label decoder: the highest scoring label l_j

Suitable for predicting dependent d

Single-label decoder bel l_j BERT encoder

Multi-label decoder: all labels l_j with probability $P(l_j) > \tau$

Suitable for predicting relation r and head h

Experiments and evaluation

Genia11 benchmark

- Largest biomedical event extraction dataset
- Both abstract and full-text documents
- Simple and complex events (37.2% nested)

Experiments and evaluation

Genia11 benchmark

- Largest biomedical event extraction dataset
- Both abstract and full-text documents
- Simple and complex events (37.2% nested)

Model selection

- Single-task vs multi-task strategies
- Addition of multi-label decoding

Experiments and evaluation

Genia11 benchmark

- Largest biomedical event extraction dataset
- Both abstract and full-text documents
- Simple and complex events (37.2% nested)

Model selection

- Single-task vs multi-task strategies
- Addition of multi-label decoding

Evaluation

Accuracy and speed comparison

7

Comparison to the state-of-the-art

Work	Method		R	F1
Riedel et al. (2011)	FAUST – Model combination (joint+parsing)		49.41	56.04
Miwa et al. (2012)	EventMine – SVM pipeline (+coref)		53.35	57.98
Venugopal et al. (2014)	BioMLN – SVM pipeline & MLN (joint)		53.42	58.07
Majumder et al. (2016)	Stacked generalization		48.96	56.38
Björne and Salakoski (2018)	TEES – CNN pipeline (single model)	64.86	50.53	56.80
Björne and Salakoski (2018)	TEES – CNN pipeline (5x ensemble)	68.76	49.97	57.87
Björne and Salakoski (2018)	TEES – CNN pipeline (mixed 5x ensemble)	69.45	49.94	58.10
Li et al. (2019)	BiLSTM pipeline	62.18	48.44	54.46
Li et al. (2019)	Tree-LSTM pipeline	64.56	50.28	56.53
Li et al. (2019)	KB-driven Tree-LSTM pipeline	67.01	52.14	58.65
BEESL	Multi-task neural sequence labeling	69.72	53.00	60.22

Comparison to the state-of-the-art

Work	Method		R	F1
Riedel et al. (2011)	FAUST – Model combination (joint+parsing)		49.41	56.04
Miwa et al. (2012)	EventMine – SVM pipeline (+coref)		53.35	57.98
Venugopal et al. (2014)	BioMLN – SVM pipeline & MLN (joint)		53.42	58.07
Majumder et al. (2016)	Stacked generalization		48.96	56.38
Björne and Salakoski (2018)	TEES – CNN pipeline (single model)	64.86	50.53	56.80
Björne and Salakoski (2018)	TEES – CNN pipeline (5x ensemble)	68.76	49.97	57.87
Björne and Salakoski (2018)	TEES – CNN pipeline (mixed 5x ensemble)		49.94	58.10
Li et al. (2019)	BiLSTM pipeline	62.18	48.44	54.46
Li et al. (2019)	Tree-LSTM pipeline	64.56	50.28	56.53
Li et al. (2019)	KB-driven Tree-LSTM pipeline	67.01	52.14	58.65
BEESL	Multi-task neural sequence labeling	69.72	53.00	60.22

	sents/min
TEES (single)	$255_{\pm 1}$
TEES (ensemble)	$101_{\pm 1}$
BEESL	$499_{\pm 3}$
	_

*on a consumer grade CPU

Joint modeling via multi-task learning is important

• +1.57% compared to two independent classifiers $\langle d \rangle \rightarrow \langle r, h \rangle$

Joint modeling via multi-task learning is important

• +1.57% compared to two independent classifiers $\langle d \rangle \rightarrow \langle r, h \rangle$

Multi-label decoding is stable

• Values of the threshold τ in [0.3,0.7] only minimally alter results

Joint modeling via multi-task learning is important

• +1.57% compared to two independent classifiers $\langle d \rangle \rightarrow \langle r, h \rangle$

Multi-label decoding is stable

• Values of the threshold τ in [0.3,0.7] only minimally alter results

Analysis of the errors

Mainly due to ambiguous or generic words acting as event triggers

Joint modeling via multi-task learning is important

• +1.57% compared to two independent classifiers $\langle d \rangle \rightarrow \langle r, h \rangle$

Multi-label decoding is stable

• Values of the threshold τ in [0.3,0.7] only minimally alter results

Analysis of the errors

Mainly due to ambiguous or generic words acting as event triggers

Impact of non-gold entity mentions

Empirical results show the robustness to noisy, predicted entities

Summary and conclusions

- ▶ From a highly structured problem to a tagging problem
 - Novel linearization approach of event structures
 - Joint learning using multi-task learning and multi-label decoding

Summary and conclusions

▶ From a highly structured problem to a tagging problem

- Novel linearization approach of event structures
- Joint learning using multi-task learning and multi-label decoding
- Accurate and efficient solution
 - SOTA results on standard GENIA 11 benchmark (+1.57% F₁)
 - High speed efficiency (5x sents/min)
 - Viable solution for large-scale real-world scenarios

Summary and conclusions

- ▶ From a highly structured problem to a tagging problem
 - Novel linearization approach of event structures
 - Joint learning using multi-task learning and multi-label decoding
- Accurate and efficient solution
 - SOTA results on standard GENIA 11 benchmark (+1.57% F₁)
 - High speed efficiency (5x sents/min)
 - Viable solution for large-scale real-world scenarios
- ► Linearization approach useful for other NLP tasks
 - e.g., enhanced dep. parsing, fine-grained NER, semantic parsing